Riemannian cubics on the group of diffeomorphisms and the Fisher-Rao metric
Tahraoui, Rabah; Vialard, François-Xavier (2016), Riemannian cubics on the group of diffeomorphisms and the Fisher-Rao metric. https://basepub.dauphine.fr/handle/123456789/17200
Type
Document de travail / Working paperExternal document link
https://hal.archives-ouvertes.fr/hal-01331110Date
2016Series title
Cahier de recherche CEREMADE, Université Paris-DauphinePages
34
Metadata
Show full item recordAbstract (EN)
We study a second-order variational problem on the group of diffeomorphisms of the interval [0, 1] endowed with a right-invariant Sobolev metric of order 2, which consists in the minimization of the acceleration. We compute the relaxation of the problem which involves the so-called Fisher-Rao functional a convex functional on the space of measures. This relaxation enables the derivation of several optimality conditions and, in particular, a sufficient condition which guarantees that a given path of the initial problem is also a minimizer of the relaxed one. This sufficient condition is related to the existence of a solution to a Riccati equation involving the path acceleration.Subjects / Keywords
Right-invariant metric; Group of Diffeomorphisms; Fisher-Rao; Riemannian splinesRelated items
Showing items related by title and author.
-
Di Marino, Simone; Natale, Andrea; Tahraoui, Rabah; Vialard, François-Xavier (2019-06) Document de travail / Working paper
-
Variational Second-Order Interpolation on the Group of Diffeomorphisms with a Right-Invariant Metric Vialard, François-Xavier (2019) Chapitre d'ouvrage
-
Vialard, François-Xavier; Risser, Laurent; Bruveris, Martins (2012) Article accepté pour publication ou publié
-
Chizat, Lénaïc; Peyré, Gabriel; Schmitzer, Bernhard; Vialard, François-Xavier (2010) Article accepté pour publication ou publié
-
Bruveris, Martins; Vialard, François-Xavier (2017) Article accepté pour publication ou publié