Large deviations for velocity-jump processes and non-local Hamilton-Jacobi equations
Bouin, Emeric; Calvez, Vincent; Grenier, Emmanuel; Nadin, Grégoire (2016), Large deviations for velocity-jump processes and non-local Hamilton-Jacobi equations. https://basepub.dauphine.fr/handle/123456789/17208
Type
Document de travail / Working paperExternal document link
https://hal.archives-ouvertes.fr/hal-01344939Date
2016Series title
Cahier de recherche CEREMADE, Université Paris-DauphinePages
55
Metadata
Show full item recordAbstract (EN)
We establish a large deviation theory for a velocity jump process, where new random velocities are picked at a constant rate from a Gaussian distribution. The Kolmogorov forward equation associated with this process is a linear kinetic transport equation in which the BGK operator accounts for the changes in velocity. We analyse its asymptotic limit after a suitable rescaling compatible with the WKB expansion. This yields a new type of Hamilton Jacobi equation which is non local with respect to velocity variable. We introduce a dedicated notion of viscosity solution for the limit problem, and we prove well-posedness in the viscosity sense. The fundamental solution is explicitly computed, yielding quantitative estimates for the large deviations of the underlying velocity-jump process à la Freidlin-Wentzell. As an application of this theory, we conjecture exact rates of acceleration in some nonlinear kinetic reaction-transport equations.Subjects / Keywords
Large deviations; Piecewise Deterministic Markov Processes; Hamilton-Jacobi equations; Viscosity solutions; Scaling limits; Front accelerationRelated items
Showing items related by title and author.
-
Cardaliaguet, Pierre; Rainer, Catherine (2011) Article accepté pour publication ou publié
-
Bouin, Emeric; Henderson, Christopher; Ryzhik, Lenya (2017) Article accepté pour publication ou publié
-
Hajej, Ahmed (2016) Document de travail / Working paper
-
Barles, Guy; Cardaliaguet, Pierre; Ley, Olivier; Monteillet, Aurélien (2009) Article accepté pour publication ou publié
-
Garnier, Jimmy; Cotto, Olivier; Bouin, Emeric; Bourgeron, T.; Lepoutre, Thomas; Ronce, Ophélie; Calvez, Vincent (2023) Article accepté pour publication ou publié