• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - Request a copy

Automatic Image Segmentation with Anisotropic Fast Marching Algorithm and Geodesic Voting

Ghorpade, Vijaya; Cohen, Laurent D. (2015), Automatic Image Segmentation with Anisotropic Fast Marching Algorithm and Geodesic Voting, 2015 IEEE International Conference on Image Processing (ICIP), IEEE : Piscataway, NJ. 10.1109/ICIP.2015.7351355

Type
Communication / Conférence
Date
2015
Book title
2015 IEEE International Conference on Image Processing (ICIP); ICIP 2015
Publisher
IEEE
Published in
Piscataway, NJ
ISBN
978-1-4799-8339-1
Publication identifier
10.1109/ICIP.2015.7351355
Metadata
Show full item record
Author(s)
Ghorpade, Vijaya

Cohen, Laurent D.
Abstract (EN)
Segmentation methods based on energy minimization techniques like geodesic active contour model generally needs manual intervention to provide initial points to calculate minimal paths. In this paper, we propose complete automation of segmentation. Seeds and Tips are automatically detected, and geodesics are calculated using Anisotropic Fast Marching algorithm. Fast Marching algorithm computes in a single pass, the evolution of the front, at a speed locally given by its position. Anisotropic Fast Marching (AFM) is a variant of Fast Marching, in which the the measure of path length (and the front speed) depends not only on the path position, but also on path direction and orientation. In this work, a gradient based metric has been defined and AFM is evaluated iteratively over a set of points which are automatically detected on the object boundary. Geodesic voting is then applied to get the segmented structure.
Subjects / Keywords
Riemannian metric; Segmentation; Anisotropic Fast Marching algorithm; Geodesic voting

Related items

Showing items related by title and author.

  • Thumbnail
    The Fast Marching Algorithm for Image Segmentation 
    Cohen, Laurent D. (2015) Communication / Conférence
  • Thumbnail
    Segmentation of microglia from confocal microscope images combining the Fast Marching Method with Harris Points 
    Rouchdy, Youssef; Cohen, Laurent D.; Pascual, Olivier; Bessis, Alain (2008) Communication / Conférence
  • Thumbnail
    A Hybrid Scheme for Contour Detection and Completion Based on Topological Gradient and Fast Marching Algorithms - Application to Inpainting and Segmentation 
    Ahipo, Y.; Auroux, Didier; Cohen, Laurent D.; Masmoudi, Mohamed (2012) Communication / Conférence
  • Thumbnail
    Contour Detection and Completion for Inpainting and Segmentation Based on Topological Gradient and Fast Marching Algorithms 
    Auroux, Didier; Cohen, Laurent D.; Masmoudi, Mohamed (2011) Article accepté pour publication ou publié
  • Thumbnail
    Tubular Model for Orientation Dependant Vessel Segmentation using Anisotropic Fast Marching 
    Benmansour, Fethallah; Cohen, Laurent D. (2010) Communication / Conférence
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo