Show simple item record

dc.contributor.authorDucatez, Raphaël
dc.date.accessioned2018-01-08T13:18:33Z
dc.date.available2018-01-08T13:18:33Z
dc.date.issued2018
dc.identifier.issn1664-039X
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/17249
dc.language.isoenen
dc.subjectmultiscale analysis.
dc.subjectHartree-Fock theory
dc.subjectAnderson localisation
dc.subject.ddc520en
dc.titleAnderson localisation for infinitely many interacting particles in Hartree-Fock theory
dc.typeArticle accepté pour publication ou publié
dc.description.abstractenWe prove the occurrence of Anderson localisation for a system of infinitely many particles interacting with a short range potential, within the ground state Hartree-Fock approximation. We assume that the particles hop on a discrete lattice and that they are submitted to an external periodic potential which creates a gap in the non-interacting one particle Hamiltonian. We also assume that the interaction is weak enough to preserve a gap. We prove that the mean-field operator has exponentially localised eigenvectors, either on its whole spectrum or at the edges of its bands, depending on the strength of the disorder.
dc.relation.isversionofjnlnameJournal of Spectral Theory
dc.relation.isversionofjnlvol8
dc.relation.isversionofjnlissue3
dc.relation.isversionofjnldate2018
dc.relation.isversionofjnlpages1019-1050
dc.relation.isversionofdoi10.4171/JST/221
dc.identifier.urlsitehttps://hal.archives-ouvertes.fr/hal-01271084
dc.relation.isversionofjnlpublisherEuropean Mathematical Society
dc.subject.ddclabelSciences connexes (physique, astrophysique)en
dc.description.ssrncandidatenon
dc.description.halcandidatenon
dc.description.readershiprecherche
dc.description.audienceInternational
dc.relation.Isversionofjnlpeerreviewedoui
dc.date.updated2018-07-20T14:07:29Z


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record