Show simple item record

hal.structure.identifierLaboratoire Jean Kuntzmann [LJK]
dc.contributor.authorAbdallah, Hiba
hal.structure.identifierCEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
dc.contributor.authorMérigot, Quentin
HAL ID: 235
dc.date.accessioned2018-01-08T14:29:58Z
dc.date.available2018-01-08T14:29:58Z
dc.date.issued2015
dc.identifier.issn0179-5376
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/17253
dc.language.isoenen
dc.subjectMinkowski problemen
dc.subjectsurface area measureen
dc.subjectrandom samplingen
dc.subject.ddc518en
dc.titleOn the reconstruction of convex sets from random normal measurementsen
dc.typeArticle accepté pour publication ou publié
dc.description.abstractenWe study the problem of reconstructing a convex body using only a finite number of measurements of outer normal vectors. More precisely, we suppose that the normal vectors are measured at independent random locations uniformly distributed along the boundary of our convex set. Given a desired Hausdorff error $\eta$, we provide an upper bounds on the number of probes that one has to perform in order to obtain an $\eta$-approximation of this convex set with high probability. Our result rely on the stability theory related to Minkowski's theorem.en
dc.relation.isversionofjnlnameDiscrete and Computational Geometry
dc.relation.isversionofjnlvol53en
dc.relation.isversionofjnlissue3en
dc.relation.isversionofjnldate2015-04
dc.relation.isversionofjnlpages569-586en
dc.relation.isversionofdoi10.1007/s00454-015-9673-2en
dc.subject.ddclabelModèles mathématiques. Algorithmesen
dc.relation.forthcomingnonen
dc.relation.forthcomingprintnonen
dc.description.ssrncandidatenonen
dc.description.halcandidatenonen
dc.description.readershiprechercheen
dc.description.audienceInternationalen
dc.relation.Isversionofjnlpeerreviewednonen
dc.relation.Isversionofjnlpeerreviewednonen
dc.date.updated2018-01-08T14:25:52Z
hal.author.functionaut
hal.author.functionaut


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record