• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

Fourier Descriptors Based on the Structure of the Human Primary Visual Cortex with Applications to Object Recognition

Bohi, Amine; Prandi, Dario; Guis, Vincente; Bouchara, Frédéric; Gauthier, Jean-Paul (2016), Fourier Descriptors Based on the Structure of the Human Primary Visual Cortex with Applications to Object Recognition, Journal of Mathematical Imaging and Vision, 57, 1, p. 117–133. 10.1007/s10851-016-0669-1

View/Open
1507.06617.pdf (477.8Kb)
Type
Article accepté pour publication ou publié
Date
2016
Journal name
Journal of Mathematical Imaging and Vision
Volume
57
Number
1
Publisher
Kluwer Academic Publishers
Pages
117–133
Publication identifier
10.1007/s10851-016-0669-1
Metadata
Show full item record
Author(s)
Bohi, Amine cc
Laboratoire des Sciences de l'Information et des Systèmes [LSIS]
Prandi, Dario cc
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Guis, Vincente
Laboratoire des Sciences de l'Information et des Systèmes [LSIS]
Bouchara, Frédéric
Laboratoire des Sciences de l'Information et des Systèmes [LSIS]
Gauthier, Jean-Paul
Laboratoire des Sciences de l'Information et des Systèmes [LSIS]
Abstract (EN)
In this paper we propose a supervised object recognition method using new global features and inspired by the model of the human primary visual cortex V1 as the semidiscrete roto-translation group SE(2,N)=ZN⋊R2. The proposed technique is based on generalized Fourier descriptors on the latter group, which are invariant to natural geometric transformations (rotations, translations). These descriptors are then used to feed an SVM classifier. We have tested our method against the COIL-100 image database and the ORL face database, and compared it with other techniques based on traditional descriptors, global and local. The obtained results have shown that our approach looks extremely efficient and stable to noise, in presence of which it outperforms the other techniques analyzed in the paper.
Subjects / Keywords
Descriptor; Fourier transform; Hexagonal grid; Geometric transformations; Support vector machine; Object recognition

Related items

Showing items related by title and author.

  • Thumbnail
    Image processing in the semidiscrete group of rototranslations 
    Prandi, Dario; Boscain, Ugo; Gauthier, Jean-Paul (2015) Communication / Conférence
  • Thumbnail
    A Human Activity Recognition System Based on Dynamic Clustering of Skeleton Data 
    Manzi, Alessandro; Dario, Paolo; Cavallo, Filippo (2017) Article accepté pour publication ou publié
  • Thumbnail
    State estimation with nonlinear reduced models. Application to the reconstruction of blood flows with Doppler ultrasound images 
    Galarce, Felipe; Gerbeau, Jean-Frédéric; Lombardi, Damiano; Mula, Olga (2019) Document de travail / Working paper
  • Thumbnail
    Contribution à l’étude de l’utilité des normes comptables pour les investisseurs : application à l’identification des actifs incorporels dans le cas des regroupements d’entreprises 
    Astolfi, Pierre (2012-09) Thèse
  • Thumbnail
    Placing a monetary value on the human health component of zoonotic diseases- A methodological note with an application to cysticercosis in Africa 
    Herrera Araujo, Daniel; Mikecz, O.; PicaCiamarra, U. (2020) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo