Show simple item record

hal.structure.identifierCentre de Mathématiques et de Leurs Applications [CMLA]
dc.contributor.authorCarrapatoso, Kleber
hal.structure.identifierCEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
dc.contributor.authorTristani, Isabelle
hal.structure.identifier
dc.contributor.authorWu, Kung-Chien
dc.date.accessioned2018-01-12T10:39:24Z
dc.date.available2018-01-12T10:39:24Z
dc.date.issued2016
dc.identifier.issn0003-9527
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/17287
dc.language.isoenen
dc.subjectinhomogeneous Landau equationen
dc.subject.ddc515en
dc.titleCauchy problem and exponential stability for the inhomogeneous Landau equationen
dc.typeArticle accepté pour publication ou publié
dc.description.abstractenThis work deals with the inhomogeneous Landau equation on the torus in the cases of hard, maxwellian and moderately soft potentials. We first investigate the linearized equation and we prove exponential decay estimates for the associated semigroup. We then turn to the nonlinear equation and we use the linearized semigroup decay in order to construct solutions in a close-to-equilibrium setting. Finally, we prove a exponential stability for such a solution, with a rate as close as we want to the optimal rate given by the semigroup decay.en
dc.relation.isversionofjnlnameArchive for Rational Mechanics and Analysis
dc.relation.isversionofjnlvol221en
dc.relation.isversionofjnlissue1en
dc.relation.isversionofjnldate2016-07
dc.relation.isversionofjnlpages363–418en
dc.relation.isversionofdoi10.1007/s00205-015-0963-xen
dc.relation.isversionofjnlpublisherSpringeren
dc.subject.ddclabelAnalyseen
dc.relation.forthcomingnonen
dc.relation.forthcomingprintnonen
dc.description.ssrncandidatenonen
dc.description.halcandidatenonen
dc.description.readershiprechercheen
dc.description.audienceInternationalen
dc.relation.Isversionofjnlpeerreviewedouien
dc.relation.Isversionofjnlpeerreviewedouien
dc.date.updated2018-01-12T10:36:04Z
hal.author.functionaut
hal.author.functionaut
hal.author.functionaut


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record