Ballistic and superdiffusive scales in the macroscopic evolution of a chain of oscillators
hal.structure.identifier | Institut of Mathematics - Polish Academy of Sciences [PAN] | |
dc.contributor.author | Komorowski, Tomasz | |
hal.structure.identifier | CEntre de REcherches en MAthématiques de la DEcision [CEREMADE] | |
dc.contributor.author | Olla, Stefano
HAL ID: 18345 ORCID: 0000-0003-0845-1861 | |
dc.date.accessioned | 2018-01-12T12:21:06Z | |
dc.date.available | 2018-01-12T12:21:06Z | |
dc.date.issued | 2016 | |
dc.identifier.issn | 0951-7715 | |
dc.identifier.uri | https://basepub.dauphine.fr/handle/123456789/17289 | |
dc.language.iso | en | en |
dc.subject | chain of oscillators | en |
dc.subject | diffusive scaling limit of the Riemann invariants | en |
dc.subject.ddc | 520 | en |
dc.title | Ballistic and superdiffusive scales in the macroscopic evolution of a chain of oscillators | en |
dc.type | Article accepté pour publication ou publié | |
dc.description.abstracten | We consider a one dimensional infinite acoustic chain of harmonic oscillators whose dynamics is perturbed by a random exchange of velocities, such that the energy and momentum of the chain are conserved. Consequently, the evolution of the system has only three conserved quantities: volume, momentum and energy. We show the existence of two space–time scales on which the en- ergy of the system evolves. On the hyperbolic scale (tε−1,xε−1) the limits of the conserved quantities satisfy a Euler system of equa- tions, while the thermal part of the energy macroscopic profile re- mains stationary. Thermal energy starts evolving at a longer time scale, corresponding to the superdiffusive scaling (tε−3/2, xε−1) and follows a fractional heat equation. We also prove the diffusive scal- ing limit of the Riemann invariants - the so called normal modes, corresponding to the linear hyperbolic propagation. | en |
dc.relation.isversionofjnlname | Nonlinearity | |
dc.relation.isversionofjnlvol | 29 | en |
dc.relation.isversionofjnlissue | 3 | en |
dc.relation.isversionofjnldate | 2016-02 | |
dc.relation.isversionofdoi | 10.1088/0951-7715/29/3/962 | en |
dc.relation.isversionofjnlpublisher | IOP Publishing | en |
dc.subject.ddclabel | Sciences connexes (physique, astrophysique) | en |
dc.relation.forthcoming | non | en |
dc.relation.forthcomingprint | non | en |
dc.description.ssrncandidate | non | en |
dc.description.halcandidate | non | en |
dc.description.readership | recherche | en |
dc.description.audience | International | en |
dc.relation.Isversionofjnlpeerreviewed | oui | en |
dc.relation.Isversionofjnlpeerreviewed | oui | en |
dc.date.updated | 2018-01-12T12:18:14Z | |
hal.author.function | aut | |
hal.author.function | aut |