High order variational numerical schemes with application to Nash -MFG vaccination games
Laguzet, Laetitia (2018), High order variational numerical schemes with application to Nash -MFG vaccination games, Ricerche di Matematica, 67, 1, p. 247-269. 10.1007/s11587-018-0366-z
Type
Article accepté pour publication ou publiéExternal document link
https://hal.archives-ouvertes.fr/hal-01404619Date
2018Journal name
Ricerche di MatematicaVolume
67Number
1Publisher
Springer
Pages
247-269
Publication identifier
Metadata
Show full item recordAbstract (EN)
This paper introduces high-order explicit Runge-Kutta numerical schemes in metric spaces. We show that our approach reduces to corresponding Runge-Kutta schemes if the ambient space is Hilbert. We apply these schemes to compute the Nash equilibrium in a Mean Field vaccination Game. Numerical simulations show improvement in the speed of convergence towards the Nash equilibrium; the numerical scheme has high order (two to four) in time.Subjects / Keywords
Variational scheme; Mean Field Games; Nash equilibrium; Vaccination games; SIR modelRelated items
Showing items related by title and author.
-
Laguzet, Laetitia; Turinici, Gabriel (2015) Article accepté pour publication ou publié
-
Laguzet, Laetitia; Turinici, Gabriel (2015) Article accepté pour publication ou publié
-
Turinici, Gabriel (2017) Article accepté pour publication ou publié
-
Hubert, Emma; Turinici, Gabriel (2018) Article accepté pour publication ou publié
-
Laguzet, Laetitia (2015-11) Thèse