• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - Request a copy

Free energy Sequential Monte Carlo, application to mixture modelling

Chopin, Nicolas; Jacob, Pierre E. (2011), Free energy Sequential Monte Carlo, application to mixture modelling, in Bernardo, José M.; Bayarri, M.J.; Berger, James O.; Dawid, A.P.; Heckermann, David; Smith, Adrian F. M.; West, Mike, Bayesian Statistics 9, Oxford University Press : Oxford. 10.1093/acprof:oso/9780199694587.003.0003

Type
Communication / Conférence
Date
2011
Conference title
Bayesian Statistics 9
Conference date
2011-06
Conference city
Benidorm
Conference country
Spain
Book title
Bayesian Statistics 9
Book author
Bernardo, José M.; Bayarri, M.J.; Berger, James O.; Dawid, A.P.; Heckermann, David; Smith, Adrian F. M.; West, Mike
Publisher
Oxford University Press
Published in
Oxford
ISBN
9780199694587
Publication identifier
10.1093/acprof:oso/9780199694587.003.0003
Metadata
Show full item record
Author(s)
Chopin, Nicolas

Jacob, Pierre E. cc
Abstract (EN)
We introduce a new class of Sequential Monte Carlo (SMC) methods, which we call free energy SMC. This class is inspired by free energy methods, which originate from Physics, and where one samples from a biased distribution such that a given function $\xi(\theta)$ of the state $\theta$ is forced to be uniformly distributed over a given interval. From an initial sequence of distributions $(\pi_t)$ of interest, and a particular choice of $\xi(\theta)$, a free energy SMC sampler computes sequentially a sequence of biased distributions $(\tilde{\pi}_{t})$ with the following properties: (a) the marginal distribution of $\xi(\theta)$ with respect to $\tilde{\pi}_{t}$ is approximatively uniform over a specified interval, and (b) $\tilde{\pi}_{t}$ and $\pi_{t}$ have the same conditional distribution with respect to $\xi$. We apply our methodology to mixture posterior distributions, which are highly multimodal. In the mixture context, forcing certain hyper-parameters to higher values greatly faciliates mode swapping, and makes it possible to recover a symetric output. We illustrate our approach with univariate and bivariate Gaussian mixtures and two real-world datasets.
Subjects / Keywords
Free energy biasing; Label switching; Mixture; Sequential Monte Carlo; particle filter

Related items

Showing items related by title and author.

  • Thumbnail
    Sequential Monte Carlo on large binary sampling spaces 
    Schäfer, Christian; Chopin, Nicolas (2013) Article accepté pour publication ou publié
  • Thumbnail
    Discussions on "Riemann manifold Langevin and Hamiltonian Monte Carlo methods" 
    Barthelme, Simon; Beffy, Magali; Chopin, Nicolas; Doucet, Arnaud; Jacob, Pierre E.; Johansen, Adam M.; Marin, Jean-Michel; Robert, Christian P. (2011) Document de travail / Working paper
  • Thumbnail
    Comments on Particle Markov chain Monte Carlo" by C. Andrieu, A. Doucet, and R. Hollenstein" 
    Jacob, Pierre E.; Chopin, Nicolas; Robert, Christian P.; Rue, Havard (2009) Document de travail / Working paper
  • Thumbnail
    Sequential Quasi Monte Carlo for Dirichlet Process Mixture Models 
    Arbel, Julyan; Salomond, Jean-Bernard (2016) Communication / Conférence
  • Thumbnail
    Applications of Malliavin calculus to Monte Carlo methods in finance 
    Fournié, Eric; Lasry, Jean-Michel; Lebuchoux, Jérôme; Lions, Pierre-Louis; Touzi, Nizar (1999) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo