Free energy Sequential Monte Carlo, application to mixture modelling
hal.structure.identifier | ||
dc.contributor.author | Chopin, Nicolas | * |
hal.structure.identifier | ||
dc.contributor.author | Jacob, Pierre E.
HAL ID: 16651 ORCID: 0000-0002-4662-1051 | * |
dc.date.accessioned | 2018-01-12T15:46:00Z | |
dc.date.available | 2018-01-12T15:46:00Z | |
dc.date.issued | 2011 | |
dc.identifier.uri | https://basepub.dauphine.fr/handle/123456789/17307 | |
dc.language.iso | en | en |
dc.subject | Free energy biasing | en |
dc.subject | Label switching | en |
dc.subject | Mixture | en |
dc.subject | Sequential Monte Carlo | en |
dc.subject | particle filter | en |
dc.subject.ddc | 519 | en |
dc.title | Free energy Sequential Monte Carlo, application to mixture modelling | en |
dc.type | Communication / Conférence | |
dc.description.abstracten | We introduce a new class of Sequential Monte Carlo (SMC) methods, which we call free energy SMC. This class is inspired by free energy methods, which originate from Physics, and where one samples from a biased distribution such that a given function $\xi(\theta)$ of the state $\theta$ is forced to be uniformly distributed over a given interval. From an initial sequence of distributions $(\pi_t)$ of interest, and a particular choice of $\xi(\theta)$, a free energy SMC sampler computes sequentially a sequence of biased distributions $(\tilde{\pi}_{t})$ with the following properties: (a) the marginal distribution of $\xi(\theta)$ with respect to $\tilde{\pi}_{t}$ is approximatively uniform over a specified interval, and (b) $\tilde{\pi}_{t}$ and $\pi_{t}$ have the same conditional distribution with respect to $\xi$. We apply our methodology to mixture posterior distributions, which are highly multimodal. In the mixture context, forcing certain hyper-parameters to higher values greatly faciliates mode swapping, and makes it possible to recover a symetric output. We illustrate our approach with univariate and bivariate Gaussian mixtures and two real-world datasets. | en |
dc.relation.ispartoftitle | Bayesian Statistics 9 | en |
dc.relation.ispartofeditor | Bernardo, José M. | |
dc.relation.ispartofeditor | Bayarri, M.J. | |
dc.relation.ispartofeditor | Berger, James O. | |
dc.relation.ispartofeditor | Dawid, A.P. | |
dc.relation.ispartofeditor | Heckermann, David | |
dc.relation.ispartofeditor | Smith, Adrian F. M. | |
dc.relation.ispartofeditor | West, Mike | |
dc.relation.ispartofpublname | Oxford University Press | en |
dc.relation.ispartofpublcity | Oxford | en |
dc.relation.ispartofdate | 2011 | |
dc.subject.ddclabel | Probabilités et mathématiques appliquées | en |
dc.relation.ispartofisbn | 9780199694587 | en |
dc.relation.conftitle | Bayesian Statistics 9 | en |
dc.relation.confdate | 2011-06 | |
dc.relation.confcity | Benidorm | en |
dc.relation.confcountry | Spain | en |
dc.relation.forthcoming | non | en |
dc.identifier.doi | 10.1093/acprof:oso/9780199694587.003.0003 | en |
dc.description.ssrncandidate | non | en |
dc.description.halcandidate | non | en |
dc.description.readership | recherche | en |
dc.description.audience | International | en |
dc.relation.Isversionofjnlpeerreviewed | non | en |
dc.relation.Isversionofjnlpeerreviewed | non | en |
dc.date.updated | 2017-12-22T17:16:34Z | |
hal.author.function | aut | |
hal.author.function | aut |
Files in this item
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |