Well-posedness of the Drude-Born-Fedorov model for chiral media
Legendre, Guillaume; Ciarlet, Patrick (2007), Well-posedness of the Drude-Born-Fedorov model for chiral media, Mathematical Models and Methods in Applied Sciences, 17, 3, p. 461-484. http://dx.doi.org/10.1142/S0218202507001991
Type
Article accepté pour publication ou publiéDate
2007Journal name
Mathematical Models and Methods in Applied SciencesVolume
17Number
3Publisher
World Scientific Publishing
Pages
461-484
Publication identifier
Metadata
Show full item recordAbstract (EN)
We consider a chiral medium in a bounded domain, enclosed in a perfectly conducting material. We solve the transient Maxwell equations in this domain, when the medium is modeled by the Drude–Born–Fedorov constitutive equations. The input data is located on the boundary, in the form of given surface current and surface charge densities. It is proved that, except for a countable set of chirality admittance values, the problem is mathematically well-posed. This result holds for domains with non-smooth boundaries.Subjects / Keywords
Drude–Born–Fedorov relations; Maxwell's equations; Chiral mediaRelated items
Showing items related by title and author.
-
Ciarlet, Patrick; Legendre, Guillaume (2009) Article accepté pour publication ou publié
-
Nicaise, Serge; Legendre, Guillaume; Ciarlet, Patrick (2013) Article accepté pour publication ou publié
-
Gati, Yousra; Catto, Isabelle; Cancès, Eric; Le Bris, Claude (2005) Article accepté pour publication ou publié
-
Haspot, Boris (2011) Article accepté pour publication ou publié
-
Audiard, Corentin; Haspot, Boris (2017) Article accepté pour publication ou publié