
Multiplicative stochastic heat equations on the whole space
Hairer, Martin; Labbé, Cyril (2018), Multiplicative stochastic heat equations on the whole space, Journal of the European Mathematical Society, 20, 4, p. 1005-1054. 10.4171/JEMS/781
View/ Open
Type
Article accepté pour publication ou publiéDate
2018Journal name
Journal of the European Mathematical SocietyVolume
20Number
4Publisher
European Mathematical Society
Pages
1005-1054
Publication identifier
Metadata
Show full item recordAuthor(s)
Hairer, MartinLabbé, Cyril
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Abstract (EN)
We carry out the construction of some ill-posed multiplicative stochastic heat equations on unbounded domains. The two main equations our result covers are, on the one hand the parabolic Anderson model on R3, and on the other hand the KPZ equation on R via the Cole-Hopf transform. To perform these constructions, we adapt the theory of regularity structures to the setting of weighted Besov spaces. One particular feature of our construction is that it allows one to start both equations from a Dirac mass at the initial time.Subjects / Keywords
Stochastic partial differential equations; Numerical solutions; Anderson model; Mathematical modelsRelated items
Showing items related by title and author.
-
Hairer, Martin; Labbé, Cyril (2017) Article accepté pour publication ou publié
-
Lissy, Pierre (2022) Document de travail / Working paper
-
Dumaz, Laure; Labbé, Cyril (2022) Article accepté pour publication ou publié
-
Labbé, Cyril (2017) Article accepté pour publication ou publié
-
Carlier, Guillaume; Agueh, Martial (2009) Article accepté pour publication ou publié