
On the minimizing movement with the 1-Wasserstein distance
Agueh, Martial; Carlier, Guillaume; Igbida, Noureddine (2018), On the minimizing movement with the 1-Wasserstein distance, ESAIM: Control, Optimisation and Calculus of Variations, 24, 4 (October–December 2018 ), p. 1415 - 1427. 10.1051/cocv/2017055
View/ Open
Type
Article accepté pour publication ou publiéExternal document link
https://hal.archives-ouvertes.fr/hal-01467979Date
2018Journal name
ESAIM: Control, Optimisation and Calculus of VariationsVolume
24Number
4 (October–December 2018 )Pages
1415 - 1427
Publication identifier
Metadata
Show full item recordAuthor(s)
Agueh, MartialDept. of Mathematics, University of Victoria
Carlier, Guillaume
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Igbida, Noureddine
Abstract (EN)
We consider a class of doubly nonlinear constrained evolution equations which may be viewed as a nonlinear extension of the growing sandpile model of [15]. We prove existence of weak solutions for quite irregular sources by a semi-implicit scheme in the spirit of the seminal works of [13] and [14] but with the 1-Wasserstein distance instead of the quadratic one. We also prove an L 1-contraction result when the source is L 1 and deduce uniqueness and stability in this case.Subjects / Keywords
L 1 -contraction; 1-Wasserstein distance; minimizing movement; growingsandpilesRelated items
Showing items related by title and author.
-
Carlier, Guillaume; Agueh, Martial (2011) Article accepté pour publication ou publié
-
Agueh, Martial; Carlier, Guillaume (2016-12) Article accepté pour publication ou publié
-
Carlier, Guillaume; Agueh, Martial (2009) Article accepté pour publication ou publié
-
Agueh, Martial; Carlier, Guillaume; Illner, Reinhard (2015) Article accepté pour publication ou publié
-
Agueh, Martial; Carlier, Guillaume (2015-06) Article accepté pour publication ou publié