• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

On the convergence of the extremal eigenvalues of empirical covariance matrices with dependence

Chafaï, Djalil; Tikhomirov, Konstantin (2018), On the convergence of the extremal eigenvalues of empirical covariance matrices with dependence, Probability Theory and Related Fields, 170, 3-4, p. 847-889. 10.1007/s00440-017-0778-9

View/Open
1509.02231.pdf (337.8Kb)
Type
Article accepté pour publication ou publié
Date
2018
Journal name
Probability Theory and Related Fields
Volume
170
Number
3-4
Publisher
Springer
Pages
847-889
Publication identifier
10.1007/s00440-017-0778-9
Metadata
Show full item record
Author(s)
Chafaï, Djalil cc
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Tikhomirov, Konstantin
Abstract (EN)
Consider a sample of a centered random vector with unit covariance matrix. We show that under certain regularity assumptions, and up to a natural scaling, the smallest and the largest eigenvalues of the empirical covariance matrix converge, when the dimension and the sample size both tend to infinity, to the left and right edges of the Marchenko--Pastur distribution. The assumptions are related to tails of norms of orthogonal projections. They cover isotropic log-concave random vectors as well as random vectors with i.i.d. coordinates with almost optimal moment conditions. The method is a refinement of the rank one update approach used by Srivastava and Vershynin to produce non-asymptotic quantitative estimates. In other words we provide a new proof of the Bai and Yin theorem using basic tools from probability theory and linear algebra, together with a new extension of this theorem to random matrices with dependent entries.
Subjects / Keywords
Convex body; Random matrix; Covariance matrix; Singular value; Operator norm; Sherman–Morrison formula; Thin-shell inequality; Log-concave distribution; Dependence

Related items

Showing items related by title and author.

  • Thumbnail
    Convergence of the spectrum of empirical covariance matrices for independent MRW processes 
    Allez, Romain; Rhodes, Rémi; Vargas, Vincent (2015) Article accepté pour publication ou publié
  • Thumbnail
    On the spectral radius of a random matrix: An upper bound without fourth moment 
    Bordenave, Charles; Caputo, Pietro; Chafaï, Djalil; Tikhomirov, Konstantin (2018) Article accepté pour publication ou publié
  • Thumbnail
    Convergence of the spectral radius of a random matrix through its characteristic polynomial 
    Bordenave, Charles; Chafaï, Djalil; García-Zelada, David (2021) Article accepté pour publication ou publié
  • Thumbnail
    New examples of extremal domains for the first eigenvalue of the Laplace-Beltrami operator in a Riemannian manifold with boundary 
    Lamboley, Jimmy; Sicbaldi, Pieralberto (2015) Article accepté pour publication ou publié
  • Thumbnail
    An extremal eigenvalue problem for the Wentzell-Laplace operator 
    Dambrine, Marc; Kateb, Djalil; Lamboley, Jimmy (2016) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo