The N-body problem
Féjoz, Jacques (2015), The N-body problem, in Alessandra Celletti, Celestial Mechanics, Unesco : Paris, p. 126-167
Type
Chapitre d'ouvrageExternal document link
https://www.ceremade.dauphine.fr/~fejoz/Articles/Fejoz_2014_nbp.pdfDate
2015Book title
Celestial MechanicsBook author
Alessandra CellettiPublisher
Unesco
Series title
Encyclopedia of Life Support SystemsPublished in
Paris
ISBN
978-1-78021-519-8
Number of pages
520Pages
126-167
Metadata
Show full item recordAuthor(s)
Féjoz, JacquesCEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Institut de Mécanique Céleste et de Calcul des Ephémérides [IMCCE]
Abstract (EN)
We introduce the N-body problem of mathematical celestial mechanics, and discuss its astronomical relevance, its simplest solutions inherited from the two-body problem (called homographic motions and, among them, homothetic motions and relative equilibria), Poincaré's classification of periodic solutions, symmetric solutions and in particular choreographies such as the figure-eight solution, some properties of the global evolution and final motions, Chazy's classification in the three-body problem, some non-integrability results, perturbations series of the planetary problem and a short account on the question of its stability.Subjects / Keywords
Newton's equation; symmetry; reduction; Conley-Wintner endomorphism; stability; planetary problem; Hill's problem; central configuration; homographic motions; relative equilibria; homothetic motion; periodic orbit; Poincaré's classification; choreography; figure-eight solution; Lagrangian action; Lagrange-Jacobi identity; Sundman's inequality; collision; regularization; Marchal-Chenciner's theorem; non-collision singularity; final motions; Chazy's classification; integrability; first integral; transverse heteroclinic intersection; monodromy group; differential Galois theory; Lindstedt series; von Zeipel series; small denominators; Birkhoff series; Lagrange and Laplace stability theorems; Arnold's theorem; quasi-periodic orbit; Nekhoroshev theorem; KAM theory; instability; symbolic dynamicsRelated items
Showing items related by title and author.
-
Chenciner, Alain; Féjoz, Jacques (2009) Article accepté pour publication ou publié
-
Chenciner, Alain; Féjoz, Jacques (2008) Article accepté pour publication ou publié
-
Féjoz, Jacques (2001) Article accepté pour publication ou publié
-
Féjoz, Jacques (2002) Article accepté pour publication ou publié
-
Féjoz, Jacques; Guardia, Marcel; Kaloshin, Vadim; Roldán, Pablo (2011) Document de travail / Working paper