hal.structure.identifier | CEntre de REcherches en MAthématiques de la DEcision [CEREMADE] | |
hal.structure.identifier | Institut de Mécanique Céleste et de Calcul des Ephémérides [IMCCE] | |
dc.contributor.author | Féjoz, Jacques | |
dc.date.accessioned | 2018-02-12T14:45:35Z | |
dc.date.available | 2018-02-12T14:45:35Z | |
dc.date.issued | 2015 | |
dc.identifier.uri | https://basepub.dauphine.fr/handle/123456789/17382 | |
dc.language.iso | en | en |
dc.subject | Newton's equation | en |
dc.subject | symmetry | en |
dc.subject | reduction | en |
dc.subject | Conley-Wintner endomorphism | en |
dc.subject | stability | en |
dc.subject | planetary problem | en |
dc.subject | Hill's problem | en |
dc.subject | central configuration | en |
dc.subject | homographic motions | en |
dc.subject | relative equilibria | en |
dc.subject | homothetic motion | en |
dc.subject | periodic orbit | en |
dc.subject | Poincaré's classification | en |
dc.subject | choreography | en |
dc.subject | figure-eight solution | en |
dc.subject | Lagrangian action | en |
dc.subject | Lagrange-Jacobi identity | en |
dc.subject | Sundman's inequality | en |
dc.subject | collision | en |
dc.subject | regularization | en |
dc.subject | Marchal-Chenciner's theorem | en |
dc.subject | non-collision singularity | en |
dc.subject | final motions | en |
dc.subject | Chazy's classification | en |
dc.subject | integrability | en |
dc.subject | first integral | en |
dc.subject | transverse heteroclinic intersection | en |
dc.subject | monodromy group | en |
dc.subject | differential Galois theory | en |
dc.subject | Lindstedt series | en |
dc.subject | von Zeipel series | en |
dc.subject | small denominators | en |
dc.subject | Birkhoff series | en |
dc.subject | Lagrange and Laplace stability theorems | en |
dc.subject | Arnold's theorem | en |
dc.subject | quasi-periodic orbit | en |
dc.subject | Nekhoroshev theorem | en |
dc.subject | KAM theory | en |
dc.subject | instability | en |
dc.subject | symbolic dynamics | en |
dc.subject.ddc | 515 | en |
dc.title | The N-body problem | en |
dc.type | Chapitre d'ouvrage | |
dc.description.abstracten | We introduce the N-body problem of mathematical celestial mechanics, and discuss its astronomical relevance, its simplest solutions inherited from the two-body problem (called homographic motions and, among them, homothetic motions and relative equilibria), Poincaré's classification of periodic solutions, symmetric solutions and in particular choreographies such as the figure-eight solution, some properties of the global evolution and final motions, Chazy's classification in the three-body problem, some non-integrability results, perturbations series of the planetary problem and a short account on the question of its stability. | en |
dc.identifier.citationpages | 126-167 | en |
dc.relation.ispartofseriestitle | Encyclopedia of Life Support Systems | en |
dc.relation.ispartoftitle | Celestial Mechanics | en |
dc.relation.ispartofeditor | Alessandra Celletti | |
dc.relation.ispartofpublname | Unesco | en |
dc.relation.ispartofpublcity | Paris | en |
dc.relation.ispartofdate | 2015 | |
dc.relation.ispartofpages | 520 | en |
dc.identifier.urlsite | https://www.ceremade.dauphine.fr/~fejoz/Articles/Fejoz_2014_nbp.pdf | en |
dc.subject.ddclabel | Analyse | en |
dc.relation.ispartofisbn | 978-1-78021-519-8 | en |
dc.relation.forthcoming | non | en |
dc.description.ssrncandidate | non | en |
dc.description.halcandidate | non | en |
dc.description.readership | recherche | en |
dc.description.audience | International | en |
dc.date.updated | 2018-02-12T14:42:08Z | |
hal.author.function | aut | |