• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

Linear Programming with interval right hand sides

Gabrel, Virginie; Murat, Cécile; Remli, Nabila (2010), Linear Programming with interval right hand sides, International Transactions in Operational Research, 17, 3, p. 397-408. http://dx.doi.org/10.1111/j.1475-3995.2009.00737.x

Type
Article accepté pour publication ou publié
External document link
http://hal.archives-ouvertes.fr/hal-00178102/en/
Date
2010
Journal name
International Transactions in Operational Research
Volume
17
Number
3
Publisher
Wiley interscience
Pages
397-408
Publication identifier
http://dx.doi.org/10.1111/j.1475-3995.2009.00737.x
Metadata
Show full item record
Author(s)
Gabrel, Virginie
Murat, Cécile
Remli, Nabila
Abstract (EN)
In this paper, we study general linear programs in which right handsides are interval numbers. This model is relevant when uncertain and inaccurate factors make di±cult the assignment of a single value to each right handside. When objective function coefficients are interval numbers in a linear program, it is used to determine optimal solutions according to classical criteria coming from decision theory (like the worst case criterion). When the feasible solutions set is uncer- tain, another approach consists in determining the worst and best optimum solutions. We study the complexity of these two optimization problems when each right handside is an interval number. Moreover, we analysis the relationship between these two problems and the classical approach coming from decision theory. We exhibit some duality relation between the worst optimum solution problem and the best optimum solution problem in the dual. This study highlights some duality property in robustness analysis.
Subjects / Keywords
maximum regret criteria; robustness analysis; interval right handside; linear programming

Related items

Showing items related by title and author.

  • Thumbnail
    Best and Worst optimum for linear programs with interval right hand sides 
    Gabrel, Virginie; Murat, Cécile; Remli, Nabila (2008) Communication / Conférence
  • Thumbnail
    Robust Supply Chain Management Problem with Uncertain Demands 
    Remli, Nabila; Murat, Cécile; Gabrel, Virginie (2011) Communication / Conférence
  • Thumbnail
    Optimal and Automatic Transactional Web Service Composition with Dependency Graph and 0-1 Linear Programming 
    Gabrel, Virginie; Manouvrier, Maude; Murat, Cécile (2014) Communication / Conférence
  • Thumbnail
    Robust location transportation problems under uncertain demands 
    Gabrel, Virginie; Lacroix, Mathieu; Murat, Cécile; Remli, Nabila (2014) Article accepté pour publication ou publié
  • Thumbnail
    Nouvelle approche pour traiter des problèmes linéaires avec seconds membres incertains. Application au problème de transport 
    Remli, Nabila; Gabrel, Virginie; Murat, Cécile (2010) Communication / Conférence
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo