A Mackey-analogy-based Proof of the Connes-Kasparov Isomorphism for Real Reductive Groups
Afgoustidis, Alexandre (2016), A Mackey-analogy-based Proof of the Connes-Kasparov Isomorphism for Real Reductive Groups. https://basepub.dauphine.fr/handle/123456789/17395
Type
Document de travail / Working paperExternal document link
https://arxiv.org/pdf/1602.08891.pdfDate
2016Series title
cahier de recherche CEREMADE- Paris-DauphinePages
20
Metadata
Show full item recordAuthor(s)
Afgoustidis, AlexandreCEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Institut de Mathématiques de Jussieu - Paris Rive Gauche [IMJ-PRG]
Abstract (EN)
We give a new representation-theory based proof of the Connes-Kasparov conjecture for the K-theory of reduced C*-algebras of real reductive Lie groups. Our main tool is a natural correspondence between the tempered representation theory of such a group and that of its Cartan motion group, a semidirect product whose unitary dual and reduced C*-algebra are much more tractable. With that tool in hand, our proof is a natural adaptation of that given by Nigel Higson's work in the complex semi-simple case.Subjects / Keywords
Higson-Mackey analogy; Tempered representations; Lie group contractions; Reductive Lie groups; Baum-Connes (Connes-Kasparov) isomorphism; Group C*-algebrasRelated items
Showing items related by title and author.
-
Afgoustidis, Alexandre (2019) Article accepté pour publication ou publié
-
On the analogy between real reductive groups and Cartan motion groups : The Mackey-Higson bijection Afgoustidis, Alexandre (2021) Article accepté pour publication ou publié
-
Afgoustidis, Alexandre (2020) Article accepté pour publication ou publié
-
Afgoustidis, Alexandre; Aubert, Anne-Marie (2021) Article accepté pour publication ou publié
-
Afgoustidis, Alexandre (2015) Document de travail / Working paper