• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

Hydrodynamic behavior of 1D subdiffusive exclusion processes with random conductances

Landim, Claudio; Jara, Milton; Faggionato, Alessandra, Hydrodynamic behavior of 1D subdiffusive exclusion processes with random conductances, Probability Theory and Related Fields;0178-8051, 144, 3-4, p. 633–667. 10.1007/s00440-008-0157-7

Type
Article accepté pour publication ou publié
External document link
https://hal.archives-ouvertes.fr/hal-00453672
Journal name
Probability Theory and Related Fields;0178-8051
Volume
144
Number
3-4
Publisher
Springer
Pages
633–667
Publication identifier
10.1007/s00440-008-0157-7
Metadata
Show full item record
Author(s)
Landim, Claudio
Laboratoire de Mathématiques Raphaël Salem [LMRS]
Jara, Milton
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Instituto Nacional de Matemática Pura e Aplicada [IMPA]
Faggionato, Alessandra
Dipartimento di Matematica Guido Castelnuovo
Abstract (EN)
Consider a system of particles performing nearest neighbor random walks on the lattice Z under hard-core interaction. The rate for a jump over a given bond is direction-independent and the inverse of the jump rates are i.i.d. random variables belonging to the domain of attraction of an α-stable law, 0 < α < 1. This exclusion process models conduction in strongly disordered 1D media. We prove that, when varying over the disorder and for a suitable slowly varying function L, under the super-diffusive time scaling N 1 +1/α L(N), the density profile evolves as the solution of the random equation ∂tρ=LWρ , where LW is the generalized second-order differential operator dduddW in which W is a double-sided α-stable subordinator. This result follows from a quenched hydrodynamic limit in the case that the i.i.d. jump rates are replaced by a suitable array {ξN,x:x∈Z} having same distribution and fulfilling an a.s. invariance principle. We also prove a law of large numbers for a tagged particle.
Subjects / Keywords
Quasi-diffusion; Subdiffusion; Random environment; α-stable subordinator; Hydrodynamic limit; Interacting particle system

Related items

Showing items related by title and author.

  • Thumbnail
    Quenched nonequilibrium central limit theorem for a tagged particle in the exclusion process with bond disorder 
    Landim, Claudio; Jara, Milton (2008) Article accepté pour publication ou publié
  • Thumbnail
    Hydrodynamic Limit of the Exclusion Process in Inhomogeneous Media 
    Jara, Milton (2011) Communication / Conférence
  • Thumbnail
    Nonequilibrium Central Limit Theorem for a Tagged Particle in Symmetric Simple Exclusion 
    Jara, Milton; Landim, Claudio (2006) Article accepté pour publication ou publié
  • Thumbnail
    Nonequilibrium fluctuations for a tagged particle in mean-zero one-dimensional zero-range processes 
    Jara, Milton; Landim, Claudio; Sethuraman, Sunder Article accepté pour publication ou publié
  • Thumbnail
    Quenched scaling limits of trap models 
    Landim, Claudio; Jara, Milton; Quadros Teixeira, Augusto (2011) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo