• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Aide
  • Connexion
  • Langue 
    • Français
    • English
Consulter le document 
  •   Accueil
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • Consulter le document
  •   Accueil
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • Consulter le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Afficher

Toute la baseCentres de recherche & CollectionsAnnée de publicationAuteurTitreTypeCette collectionAnnée de publicationAuteurTitreType

Mon compte

Connexion

Enregistrement

Statistiques

Documents les plus consultésStatistiques par paysAuteurs les plus consultés
Thumbnail - No thumbnail

Hamiltonian perturbation theory for ultra-differentiable functions

Bounemoura, Abed; Féjoz, Jacques (2021), Hamiltonian perturbation theory for ultra-differentiable functions, American Mathematical Society, p. 89. 10.1090/memo/1319

Type
Ouvrage
Lien vers un document non conservé dans cette base
https://hal.archives-ouvertes.fr/hal-01599229
Date
2021
Éditeur
American Mathematical Society
Isbn
978-1-4704-4691-8
Pages
89
Identifiant publication
10.1090/memo/1319
Métadonnées
Afficher la notice complète
Auteur(s)
Bounemoura, Abed
Féjoz, Jacques
Résumé (EN)
Some scales of spaces of ultra-differentiable functions are introduced, having good stability properties with respect to infinitely many derivatives and compositions. They are well-suited for solving non-linear functional equations by means of hard implicit function theorems. They comprise Gevrey functions and thus, as a limiting case, analytic functions. Using majorizing series, we manage to characterize them in terms of a real sequence M bounding the growth of derivatives. In this functional setting, we prove two fundamental results of Hamiltonian perturbation theory: the invariant torus theorem, where the invariant torus remains ultra-differentiable under the assumption that its frequency satisfies some arithmetic condition which we call BR M , and which generalizes the Bruno-Rüssmann condition ; and Nekhoroshev's theorem, where the stability time depends on the ultra-differentiable class of the pertubation, through the same sequence M. Our proof uses periodic averaging, while a substitute of the analyticity width allows us to bypass analytic smoothing. We also prove converse statements on the destruction of invariant tori and on the existence of diffusing orbits with ultra-differentiable perturbations, by respectively mimicking a construction of Bessi (in the analytic category) and Marco-Sauzin (in the Gevrey non-analytic category). When the perturbation space satisfies some additional condition (we then call it matching), we manage to narrow the gap between stability hypotheses (e.g. the BR M condition) and instability hypotheses, thus circumbscribing the stability threshold. The formulas relating the growth M of derivatives of the perturbation on the one hand, and the arithmetics of robust frequencies or the stability time on the other hand, bring light to the competition between stability properties of nearly integrable systems and the distance to integrability. Due to our method of proof using width of regularity as a regularizing parameter, these formulas are closer to optimal as the the regularity tends to analyticity.
Mots-clés
Hamiltonian perturbation; space of ultra-differentiable functions; KAM theory; Bruno-Rüssmann condition; Nekhoroshev theorem

Publications associées

Affichage des éléments liés par titre et auteur.

  • Vignette de prévisualisation
    Positive measure of KAM tori for finitely differentiable Hamiltonians 
    Bounemoura, Abed (2020) Article accepté pour publication ou publié
  • Vignette de prévisualisation
    Reducibility of ultra-differentiable quasi-periodic cocycles under an adapted arithmetic condition 
    Bounemoura, Abed; Chavaudret, Claire; Liang, Shuqing (2021) Article accepté pour publication ou publié
  • Vignette de prévisualisation
    Generic perturbations of linear integrable Hamiltonian systems 
    Bounemoura, Abed (2016) Article accepté pour publication ou publié
  • Vignette de prévisualisation
    KAM, α -Gevrey regularity and the α -Bruno-Rüssmann condition 
    Bounemoura, Abed; Féjoz, Jacques (2017-06) Article accepté pour publication ou publié
  • Vignette de prévisualisation
    The classical KAM theorem for Hamiltonian systems via rational approximations 
    Fischler, Stephane; Bounemoura, Abed (2014) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Tél. : 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo