A forward–backward random process for the spectrum of 1D Anderson operators
Ducatez, Raphaël (2019), A forward–backward random process for the spectrum of 1D Anderson operators, Electronic Communications in Probability, 24, p. 1-13. 10.1214/19-ECP232
View/ Open
Type
Article accepté pour publication ou publiéDate
2019Journal name
Electronic Communications in ProbabilityVolume
24Publisher
Institute of Mathematical Statistics
Pages
1-13
Publication identifier
Metadata
Show full item recordAbstract (EN)
We give a new expression for the law of the eigenvalues of the discrete Anderson model on the finite interval [0,N], in terms of two random processes starting at both ends of the interval. Using this formula, we deduce that the tail of the eigenvectors behaves approximately like exp(σB|n−k|−γ|n−k|4) where Bs is the Brownian motion and k is uniformly chosen in [0,N] independently of Bs. A similar result has recently been shown by B. Rifkind and B. Virag in the critical case, that is, when the random potential is multiplied by a factor 1N√Subjects / Keywords
Anderson model; random processRelated items
Showing items related by title and author.
-
Liang, Jingwei; Fadili, Jalal M.; Peyré, Gabriel (2015) Communication / Conférence
-
Ducatez, Raphaël (2018) Article accepté pour publication ou publié
-
Huveneers, François; Ducatez, Raphaël (2017) Article accepté pour publication ou publié
-
Zhang, Jianing; Réveillac, Anthony; Imkeller, Peter; Hu, Ying; Horst, Ulrich (2014) Article accepté pour publication ou publié
-
Bouchard, Bruno; Elie, Romuald (2008) Article accepté pour publication ou publié