• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

Weak universality for a class of 3d stochastic reaction-diffusion models.

Furlan, Marco; Gubinelli, Massimiliano (2018), Weak universality for a class of 3d stochastic reaction-diffusion models., Probability Theory and Related Fields. 10.1007/s00440-018-0849-6

Type
Article accepté pour publication ou publié
External document link
https://hal.archives-ouvertes.fr/hal-01615822
Date
2018
Journal name
Probability Theory and Related Fields
Publisher
Springer
Publication identifier
10.1007/s00440-018-0849-6
Metadata
Show full item record
Author(s)
Furlan, Marco
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Gubinelli, Massimiliano
Hausdorff Center for Mathematics and Institute for Numerical Simulation - University of Bonn
Abstract (EN)
We establish the large scale convergence of a class of stochastic weakly nonlinear reaction-diffusion models on a three dimensional periodic domain to the dynamic Phi^3_4 model within the framework of paracontrolled distributions. Our work extends previous results of Hairer and Xu to nonlinearities with a finite amount of smoothness (in particular C^9 is enough). We use the Malliavin calculus to perform a partial chaos expansion of the stochastic terms and control their L^p norms in terms of the graphs of the standard Phi^3_4 stochastic terms.
Subjects / Keywords
weak universality; paracontrolled distributions; stochastic quantisation equation; Malliavin calculus; partial chaos expansion

Related items

Showing items related by title and author.

  • Thumbnail
    Paracontrolled quasilinear SPDEs 
    Furlan, Marco; Gubinelli, Massimiliano (2019) Article accepté pour publication ou publié
  • Thumbnail
    On the regularity of stochastic currents, fractional Brownian motion and applications to a turbulence model 
    Russo, Francesco; Flandoli, Franco; Gubinelli, Massimiliano (2009) Article accepté pour publication ou publié
  • Thumbnail
    A tightness criterion for random fields, with application to the Ising model 
    Furlan, Marco; Mourrat, Jean-Christophe (2017) Article accepté pour publication ou publié
  • Thumbnail
    Full well-posedness of point vortex dynamics corresponding to stochastic 2D Euler equations 
    Priola, Enrico; Gubinelli, Massimiliano; Flandoli, Franco (2011) Article accepté pour publication ou publié
  • Thumbnail
    Well-posedness of the transport equation by stochastic perturbation 
    Flandoli, Franco; Gubinelli, Massimiliano; Priola, Enrico (2010) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo