
Average-case complexity of a branch-and-bound algorithm for maximum independent set, under the $\mathcal{G}(n,p)$ random model
Bourgeois, N.; Catellier, Rémi; Denat, T.; Paschos, Vangelis (2015), Average-case complexity of a branch-and-bound algorithm for maximum independent set, under the $\mathcal{G}(n,p)$ random model. https://basepub.dauphine.fr/handle/123456789/17931
View/ Open
Type
Document de travail / Working paperDate
2015Publisher
Cahier du LAMSADE
Series title
Cahier du LAMSADEPublished in
Paris
Metadata
Show full item recordAuthor(s)
Bourgeois, N.Catellier, Rémi
Denat, T.
Paschos, Vangelis
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Abstract (EN)
We study average-case complexity of branch-and-bound for maximum independent set in random graphs under the $\mathcal{G}(n,p)$ distribution. In this model every pair $(u,v)$ of vertices belongs to $E$ with probability $p$ independently on the existence of any other edge. We make a precise case analysis, providing phase transitions between subexponential and exponential complexities depending on the probability $p$ of the random model.Subjects / Keywords
Computational ComplexityRelated items
Showing items related by title and author.
-
Afif, Mohamed; Likas, Aris; Paschos, Vangelis (1995) Article accepté pour publication ou publié
-
Van Rooij, Johan; Bourgeois, Nicolas; Escoffier, Bruno; Paschos, Vangelis (2010) Communication / Conférence
-
van Rooij, Johan; Bourgeois, Nicolas; Escoffier, Bruno; Paschos, Vangelis (2008) Document de travail / Working paper
-
Fernandez de la Vega, Wenceslas; Paschos, Vangelis; Saad, Rachid (1992) Communication / Conférence
-
Bourgeois, Nicolas; Escoffier, Bruno; Paschos, Vangelis (2010) Communication / Conférence