
Embedding Camassa-Holm equations in incompressible Euler
Natale, Andrea; Vialard, François-Xavier (2019), Embedding Camassa-Holm equations in incompressible Euler, Journal of Geometric Mechanics, 11, 2, p. 205-223. 10.3934/jgm.2019011
View/ Open
Type
Article accepté pour publication ou publiéDate
2019Journal name
Journal of Geometric MechanicsVolume
11Number
2Pages
205-223
Publication identifier
Metadata
Show full item recordAuthor(s)
Natale, AndreaCEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Vialard, François-Xavier
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Abstract (EN)
In this article, we show how to embed the so-called CH2 equations into the geodesic flow of the Hdiv metric in 2D, which, itself, can be embedded in the incompressible Euler equation of a non compact Riemannian manifold. The method consists in embedding the incompressible Euler equation with a potential term coming from classical mechanics into incompressible Euler of a manifold and seeing the CH2 equation as a particular case of such fluid dynamic equation.Subjects / Keywords
Eisenhart lift; Incompressible Euler equation; Camassa-Holm equation; Dimension theory, Poincaré recurrences, multifractal analysisRelated items
Showing items related by title and author.
-
Gallouët, Thomas; Vialard, François-Xavier (2018) Article accepté pour publication ou publié
-
Gallouët, Thomas; Natale, Andrea; Vialard, François-Xavier (2018) Document de travail / Working paper
-
Di Marino, Simone; Natale, Andrea; Tahraoui, Rabah; Vialard, François-Xavier (2019-06) Document de travail / Working paper
-
Gallouët, Thomas; Natale, Andrea; Vialard, François-Xavier (2020) Article accepté pour publication ou publié
-
Rueckert, Daniel; Holm, Darryl; Wolz, Robin; Vialard, François-Xavier; Risser, Laurent (2010) Communication / Conférence