• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

Hydrodynamic Limit for an Anharmonic Chain under Boundary Tension

Marchesani, Stefano; Olla, Stefano (2018), Hydrodynamic Limit for an Anharmonic Chain under Boundary Tension, Nonlinearity, 31, 11, p. n°4979

View/Open
Marchesani_Olla_FINAL.pdf (671.0Kb)
Type
Article accepté pour publication ou publié
External document link
https://hal.archives-ouvertes.fr/hal-01702449
Date
2018
Journal name
Nonlinearity
Volume
31
Number
11
Publisher
IOP Science
Pages
n°4979
Metadata
Show full item record
Author(s)
Marchesani, Stefano

Olla, Stefano cc
Abstract (EN)
We study the hydrodynamic limit for the isothermal dynamics of an anharmonic chain under hyperbolic space-time scaling under varying tension. The temperature is kept constant by a contact with a heat bath, realised via a stochastic momentum-preserving noise added to the dynamics. The noise is designed to be large at the microscopic level, but vanishing in the macroscopic scale. Boundary conditions are also considered: one end of the chain is kept fixed, while a time-varying tension is applied to the other end. We show that the volume stretch and momentum converge (in an appropriate sense) to a weak solution of a system of hyperbolic conservation laws (isothermal Euler equations in Lagrangian coordinates) with boundary conditions. This result includes the shock regime of the system. This is proven by adapting the theory of compensated compactness to a stochastic setting, as developed by J. Fritz in} \cite{Fritz1} for thesame model without boundary conditions. Finally, changing the external tension allows us to define thermodynamic isothermal transformations between equilibrium states. We use this to deduce the first and the second principle of Thermodynamics for our model.
Subjects / Keywords
Hyperbolic Conservation Laws; Hydrodynamic Limits; Stochastic Compensated Compactness

Related items

Showing items related by title and author.

  • Thumbnail
    Hydrodynamic Limits and Clausius inequality for Isothermal Non-linear Elastodynamics with Boundary Tension 
    Marchesani, Stefano; Olla, Stefano (2020) Document de travail / Working paper
  • Thumbnail
    Hydrodynamic limit for a chain with thermal and mechanical boundary forces 
    Komorowski, Tomasz; Olla, Stefano; Simon, Marielle (2021) Article accepté pour publication ou publié
  • Thumbnail
    Hydrodynamic Limit for a Hamiltonian System with Boundary Conditions and Conservative Noise 
    Olla, Stefano; Even, Nadine (2014) Article accepté pour publication ou publié
  • Thumbnail
    Hydrodynamic Limit for a Disordered Harmonic Chain 
    Bernardin, Cédric; Huveneers, François; Olla, Stefano (2018) Article accepté pour publication ou publié
  • Thumbnail
    Equilibrium fluctuations for a chain of anharmonic oscillators in the Euler scaling limit 
    Olla, Stefano; Xu, Lu (2020) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo