Show simple item record

hal.structure.identifierCEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
dc.contributor.authorDolbeault, Jean
HAL ID: 87
ORCID: 0000-0003-4234-2298
*
hal.structure.identifierMathematisches Institut [München] [LMU]
hal.structure.identifierDepartment of Mathematics (Caltech)
dc.contributor.authorFrank, Rupert L.*
hal.structure.identifierMathematisches Institut [München] [LMU]
dc.contributor.authorHoffmann, Franca*
dc.date.accessioned2018-09-05T09:52:44Z
dc.date.available2018-09-05T09:52:44Z
dc.date.issued2018
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/17955
dc.language.isoenen
dc.subjectEuler--Lagrange equationsen
dc.subjectregularityen
dc.subjectsymmetrizationen
dc.subjectfree energyen
dc.subjectexistence of optimal functionsen
dc.subjectminimizeren
dc.subjectconcentrationen
dc.subjectReverse Hardy-Littlewood-Sobolev inequalitiesen
dc.subjectinterpolationen
dc.subjectnon-linear diffusionen
dc.subject.ddc515en
dc.titleReverse Hardy-Littlewood-Sobolev inequalitiesen
dc.typeDocument de travail / Working paper
dc.description.abstractenThis paper is devoted to a new family of reverse Hardy-Littlewood-Sobolev inequalities which involve a power law kernel with positive exponent. We investigate the range of the admissible parameters and characterize the optimal functions. A striking open question is the possibility of concentration which is analyzed and related with nonlinear diffusion equations involving mean field drifts.en
dc.identifier.citationpages19en
dc.relation.ispartofseriestitleCahier de recherche CEREMADE, Université Paris-Dauphineen
dc.identifier.urlsitehttps://hal.archives-ouvertes.fr/hal-01735446en
dc.subject.ddclabelAnalyseen
dc.identifier.citationdate2018-03
dc.description.ssrncandidatenonen
dc.description.halcandidatenonen
dc.description.readershiprechercheen
dc.description.audienceInternationalen
dc.date.updated2018-09-05T09:50:03Z
hal.author.functionaut
hal.author.functionaut
hal.author.functionaut


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record