• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

Fokker-Planck equations of jumping particles and mean field games of impulse control

Bertucci, Charles (2020), Fokker-Planck equations of jumping particles and mean field games of impulse control, Annales de l'Institut Henri Poincaré (C) Analyse non linéaire, 37, 5, p. 1211-1244. 10.1016/j.anihpc.2020.04.006

View/Open
1803.06126(1).pdf (390.4Kb)
Type
Article accepté pour publication ou publié
Date
2020
Journal name
Annales de l'Institut Henri Poincaré (C) Analyse non linéaire
Volume
37
Number
5
Publisher
Elsevier
Pages
1211-1244
Publication identifier
10.1016/j.anihpc.2020.04.006
Metadata
Show full item record
Author(s)
Bertucci, Charles
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Abstract (EN)
This paper is interested in the description of the density of particles evolving according to some optimal policy of an impulse control problem. We first fix sets on which the particles jump and explain how we can characterize such a density. We then investigate the coupled case in which the underlying impulse control problem depends on the density we are looking for : the mean field games of impulse control. In both cases, we give a variational characterization of the densities of jumping particles.
Subjects / Keywords
mean field games of impulse control; jumping particles

Related items

Showing items related by title and author.

  • Thumbnail
    On Lipschitz solutions of mean field games master equations 
    Bertucci, Charles; Lasry, Jean-Michel; Lions, Pierre-Louis (2023) Document de travail / Working paper
  • Thumbnail
    Equations de Fokker-Planck cinétiques : hypocoercivité et hypoellipticité 
    Cao, Chuqi (2019-10-10) Thèse
  • Thumbnail
    φ -Entropies: convexity, coercivity and hypocoercivity for Fokker–Planck and kinetic Fokker–Planck equations 
    Dolbeault, Jean; Li, Xingyu (2018) Article accepté pour publication ou publié
  • Thumbnail
    A monotonic algorithm for the optimal control of the Fokker-Planck equation 
    Carlier, Guillaume; Salomon, Julien (2008) Communication / Conférence
  • Thumbnail
    Optimal control of the Fokker-Planck equation under state constraints in the Wasserstein space 
    Daudin, Samuel (2021) Document de travail / Working paper
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo