
Fokker-Planck equations of jumping particles and mean field games of impulse control
Bertucci, Charles (2020), Fokker-Planck equations of jumping particles and mean field games of impulse control, Annales de l'Institut Henri Poincaré (C) Analyse non linéaire, 37, 5, p. 1211-1244. 10.1016/j.anihpc.2020.04.006
View/ Open
Type
Article accepté pour publication ou publiéDate
2020Journal name
Annales de l'Institut Henri Poincaré (C) Analyse non linéaireVolume
37Number
5Publisher
Elsevier
Pages
1211-1244
Publication identifier
Metadata
Show full item recordAbstract (EN)
This paper is interested in the description of the density of particles evolving according to some optimal policy of an impulse control problem. We first fix sets on which the particles jump and explain how we can characterize such a density. We then investigate the coupled case in which the underlying impulse control problem depends on the density we are looking for : the mean field games of impulse control. In both cases, we give a variational characterization of the densities of jumping particles.Subjects / Keywords
mean field games of impulse control; jumping particlesRelated items
Showing items related by title and author.
-
Bertucci, Charles; Lasry, Jean-Michel; Lions, Pierre-Louis (2023) Document de travail / Working paper
-
Cao, Chuqi (2019-10-10) Thèse
-
Dolbeault, Jean; Li, Xingyu (2018) Article accepté pour publication ou publié
-
Carlier, Guillaume; Salomon, Julien (2008) Communication / Conférence
-
Daudin, Samuel (2021) Document de travail / Working paper