
Non-existence of global characteristics for viscosity solutions
Roos, Valentine (2018), Non-existence of global characteristics for viscosity solutions. https://basepub.dauphine.fr/handle/123456789/17960
View/ Open
Type
Document de travail / Working paperExternal document link
https://hal.archives-ouvertes.fr/hal-01827656Date
2018Series title
Cahier de recherche CEREMADE, Université Paris-DauphinePages
26
Metadata
Show full item recordAbstract (EN)
Two different types of generalized solutions, namely viscosity and variational solutions, were introduced to solve the first-order evolutionary Hamilton–Jacobi equation. They coincide if the Hamiltonian is convex in the momentum variable. In this paper we prove that there exists no other class of integrable Hamiltonians sharing this property. To do so, we build for any non-convex non-concave integrable Hamiltonian a smooth initial condition such that the graph of the viscosity solution is not contained in the wavefront associated with the Cauchy problem. The construction is based on a new example for a saddle Hamiltonian and a precise analysis of the one-dimensional case, coupled with reduction and approximation arguments.Subjects / Keywords
viscosity solutions; Hamilton–Jacobi equationRelated items
Showing items related by title and author.
-
Roos, Valentine (2017-06-30) Thèse
-
Burtea, Cosmin; Haspot, Boris (2022) Article accepté pour publication ou publié
-
Burtea, Cosmin; Haspot, Boris (2020) Article accepté pour publication ou publié
-
Haspot, Boris; Charve, Frédéric (2013) Article accepté pour publication ou publié
-
Haspot, Boris (2018) Article accepté pour publication ou publié