• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

Regularity of solutions of the Stein equation and rates in the multivariate central limit theorem

Gallouët, Thomas; Mijoule, Guillaume; Swan, Yvik (2018), Regularity of solutions of the Stein equation and rates in the multivariate central limit theorem. https://basepub.dauphine.fr/handle/123456789/17977

View/Open
gamisw_V2.pdf (358.2Kb)
Type
Document de travail / Working paper
External document link
https://hal.archives-ouvertes.fr/hal-01785397
Date
2018
Series title
Cahier de recherche CEREMADE, Université Paris-Dauphine
Pages
14
Metadata
Show full item record
Author(s)
Gallouët, Thomas
Département de Mathématiques [Liège]
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Mijoule, Guillaume
Département de Mathématiques [Liège]
Swan, Yvik
Département de Mathématiques [Liège]
Abstract (EN)
Consider the multivariate Stein equation Δf−x⋅∇f=h(x)−Eh(Z), where Z is a standard d-dimensional Gaussian random vector, and let fh be the solution given by Barbour's generator approach. We prove that, when h is α-H\"older (0<α≤1), all derivatives of order 2 of fh are α-H\"older {\it up to a log factor}; in particular they are β-H\"older for all β∈(0,α), hereby improving existing regularity results on the solution of the multivariate Gaussian Stein equation. For α=1, the regularity we obtain is optimal, as shown by an example given by Rai\v{c} \cite{raivc2004multivariate}. As an application, we prove a near-optimal Berry-Esseen bound of the order logn/n−−√ in the classical multivariate CLT in 1-Wasserstein distance, as long as the underlying random variables have finite moment of order 3. When only a finite moment of order 2+δ is assumed (0<δ<1), we obtain the optimal rate in O(n−δ2). All constants are explicit and their dependence on the dimension d is studied when d is large.
Subjects / Keywords
Elliptic regularity; Stein's method; Berry-esseen bounds

Related items

Showing items related by title and author.

  • Thumbnail
    Generalized compressible fluid flows and solutions of the Camassa-Holm variational model 
    Gallouët, Thomas; Natale, Andrea; Vialard, François-Xavier (2018) Document de travail / Working paper
  • Thumbnail
    Generalized compressible flows and solutions of the H(div) geodesic problem 
    Gallouët, Thomas; Natale, Andrea; Vialard, François-Xavier (2020) Article accepté pour publication ou publié
  • Thumbnail
    A note on the regularity of solutions of Hamilton-Jacobi equations with superlinear growth in the gradient variable 
    Cardaliaguet, Pierre (2009) Article accepté pour publication ou publié
  • Thumbnail
    The Camassa-Holm equation as an incompressible Euler equation: a geometric point of view 
    Gallouët, Thomas; Vialard, François-Xavier (2018) Article accepté pour publication ou publié
  • Thumbnail
    Hölder Regularity for Viscosity Solutions of Fully Nonlinear, Local or Nonlocal, Hamilton–Jacobi Equations with Superquadratic Growth in the Gradient 
    Cardaliaguet, Pierre; Rainer, Catherine (2011) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo