
Regularity of solutions of the Stein equation and rates in the multivariate central limit theorem
Gallouët, Thomas; Mijoule, Guillaume; Swan, Yvik (2018), Regularity of solutions of the Stein equation and rates in the multivariate central limit theorem. https://basepub.dauphine.fr/handle/123456789/17977
View/ Open
Type
Document de travail / Working paperExternal document link
https://hal.archives-ouvertes.fr/hal-01785397Date
2018Series title
Cahier de recherche CEREMADE, Université Paris-DauphinePages
14
Metadata
Show full item recordAuthor(s)
Gallouët, ThomasDépartement de Mathématiques [Liège]
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Mijoule, Guillaume
Département de Mathématiques [Liège]
Swan, Yvik
Département de Mathématiques [Liège]
Abstract (EN)
Consider the multivariate Stein equation Δf−x⋅∇f=h(x)−Eh(Z), where Z is a standard d-dimensional Gaussian random vector, and let fh be the solution given by Barbour's generator approach. We prove that, when h is α-H\"older (0<α≤1), all derivatives of order 2 of fh are α-H\"older {\it up to a log factor}; in particular they are β-H\"older for all β∈(0,α), hereby improving existing regularity results on the solution of the multivariate Gaussian Stein equation. For α=1, the regularity we obtain is optimal, as shown by an example given by Rai\v{c} \cite{raivc2004multivariate}. As an application, we prove a near-optimal Berry-Esseen bound of the order logn/n−−√ in the classical multivariate CLT in 1-Wasserstein distance, as long as the underlying random variables have finite moment of order 3. When only a finite moment of order 2+δ is assumed (0<δ<1), we obtain the optimal rate in O(n−δ2). All constants are explicit and their dependence on the dimension d is studied when d is large.Subjects / Keywords
Elliptic regularity; Stein's method; Berry-esseen boundsRelated items
Showing items related by title and author.
-
Gallouët, Thomas; Natale, Andrea; Vialard, François-Xavier (2018) Document de travail / Working paper
-
Gallouët, Thomas; Natale, Andrea; Vialard, François-Xavier (2020) Article accepté pour publication ou publié
-
Cardaliaguet, Pierre (2009) Article accepté pour publication ou publié
-
Gallouët, Thomas; Vialard, François-Xavier (2018) Article accepté pour publication ou publié
-
Cardaliaguet, Pierre; Rainer, Catherine (2011) Article accepté pour publication ou publié