• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

On Poincare and logarithmic Sobolev inequalities for a class of singular Gibbs measures

Chafaï, Djalil; Lehec, Joseph (2020), On Poincare and logarithmic Sobolev inequalities for a class of singular Gibbs measures, in Bo'az Klartag, Emanuel Milman, Geometric Aspects of Functional Analysis Israel Seminar (GAFA) 2017-2019 Volume I, Springer : Berlin Heidelberg, p. 219–246. 10.1007/978-3-030-36020-7_10

View/Open
guefi.pdf (385.7Kb)
Type
Chapitre d'ouvrage
Date
2020
Book title
Geometric Aspects of Functional Analysis Israel Seminar (GAFA) 2017-2019 Volume I
Book author
Bo'az Klartag, Emanuel Milman
Publisher
Springer
Published in
Berlin Heidelberg
ISBN
978-3-030-36019-1
Pages
219–246
Publication identifier
10.1007/978-3-030-36020-7_10
Metadata
Show full item record
Author(s)
Chafaï, Djalil cc
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Lehec, Joseph cc
Ecole Normale Supérieure
Abstract (EN)
This note, mostly expository, is devoted to Poincaré and logarithmic Sobolev inequalities for a class of singular Boltzmann-Gibbs measures. Such measures allow to model one-dimensional particles with confinement and singular pair interaction. The functional inequalities come from the convexity of confinement and interaction. We prove optimality in the case of quadratic confinement by using a factorization of the measure. This optimality phenomenon holds for all beta Hermite ensembles including the Gauss-ian unitary ensemble, a famous exactly solvable model of random matrix theory. We further explore exact solvability by reviewing the relation to Dyson-Ornstein-Uhlenbeck diffusion dynamics which admits the Hermite-Lassalle orthogonal polynomials as a complete set of eigenfunctions. We also discuss the McKean-Vlasov mean-field limit of the dynamics, as well as the consequence of the logarithmic Sobolev inequality in terms of concentration of measure for Lipschitz functions such as maxima and linear statistics.
Subjects / Keywords
Boltzmann–Gibbs measure; Gaussian unitary ensemble; Random matrix theory; Spectral analysis; Geometric functional analysis; Log-concave measure; Poincaré inequality; Logarithmic Sobolev inequality; Concentration of measure; Diffusion operator; Orthogonal polynomials

Related items

Showing items related by title and author.

  • Thumbnail
    On logarithmic Sobolev inequalities for the heat kernel on the Heisenberg group 
    Bonnefont, Michel; Chafaï, Djalil; Herry, Ronan (2020) Article accepté pour publication ou publié
  • Thumbnail
    Stability of the logarithmic Sobolev inequality via the Föllmer Process 
    Eldan, Ronen; Lehec, Joseph; Shenfeld, Yair (2020) Article accepté pour publication ou publié
  • Thumbnail
    Interpolation between logarithmic Sobolev and Poincaré inequalities 
    Dolbeault, Jean; Bartier, Jean-Philippe; Arnold, Anton (2007) Article accepté pour publication ou publié
  • Thumbnail
    Monotonicity of the logarithmic energy for random matrices 
    Chafai, Djalil; Dadoun, Benjamin; Youssef, Pierre (2022) Document de travail / Working paper
  • Thumbnail
    From Poincaré to logarithmic Sobolev inequalities: a gradient flow approach 
    Savaré, Giuseppe; Nazaret, Bruno; Dolbeault, Jean (2012) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo