
On Poincare and logarithmic Sobolev inequalities for a class of singular Gibbs measures
Chafaï, Djalil; Lehec, Joseph (2020), On Poincare and logarithmic Sobolev inequalities for a class of singular Gibbs measures, in Bo'az Klartag, Emanuel Milman, Geometric Aspects of Functional Analysis Israel Seminar (GAFA) 2017-2019 Volume I, Springer : Berlin Heidelberg, p. 219–246. 10.1007/978-3-030-36020-7_10
View/ Open
Type
Chapitre d'ouvrageDate
2020Book title
Geometric Aspects of Functional Analysis Israel Seminar (GAFA) 2017-2019 Volume IBook author
Bo'az Klartag, Emanuel MilmanPublisher
Springer
Published in
Berlin Heidelberg
ISBN
978-3-030-36019-1
Pages
219–246
Publication identifier
Metadata
Show full item recordAuthor(s)
Chafaï, Djalil
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Lehec, Joseph

Ecole Normale Supérieure
Abstract (EN)
This note, mostly expository, is devoted to Poincaré and logarithmic Sobolev inequalities for a class of singular Boltzmann-Gibbs measures. Such measures allow to model one-dimensional particles with confinement and singular pair interaction. The functional inequalities come from the convexity of confinement and interaction. We prove optimality in the case of quadratic confinement by using a factorization of the measure. This optimality phenomenon holds for all beta Hermite ensembles including the Gauss-ian unitary ensemble, a famous exactly solvable model of random matrix theory. We further explore exact solvability by reviewing the relation to Dyson-Ornstein-Uhlenbeck diffusion dynamics which admits the Hermite-Lassalle orthogonal polynomials as a complete set of eigenfunctions. We also discuss the McKean-Vlasov mean-field limit of the dynamics, as well as the consequence of the logarithmic Sobolev inequality in terms of concentration of measure for Lipschitz functions such as maxima and linear statistics.Subjects / Keywords
Boltzmann–Gibbs measure; Gaussian unitary ensemble; Random matrix theory; Spectral analysis; Geometric functional analysis; Log-concave measure; Poincaré inequality; Logarithmic Sobolev inequality; Concentration of measure; Diffusion operator; Orthogonal polynomialsRelated items
Showing items related by title and author.
-
Bonnefont, Michel; Chafaï, Djalil; Herry, Ronan (2020) Article accepté pour publication ou publié
-
Eldan, Ronen; Lehec, Joseph; Shenfeld, Yair (2020) Article accepté pour publication ou publié
-
Dolbeault, Jean; Bartier, Jean-Philippe; Arnold, Anton (2007) Article accepté pour publication ou publié
-
Chafai, Djalil; Dadoun, Benjamin; Youssef, Pierre (2022) Document de travail / Working paper
-
Savaré, Giuseppe; Nazaret, Bruno; Dolbeault, Jean (2012) Article accepté pour publication ou publié