• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

Hydrodynamic Limit for a Disordered Harmonic Chain

Bernardin, Cédric; Huveneers, François; Olla, Stefano (2018), Hydrodynamic Limit for a Disordered Harmonic Chain, Communications in Mathematical Physics, 365, 1, p. 215-237. 10.1007/s00220-018-3251-4

View/Open
DHC_27_07_2018s.pdf (205.4Kb)
Type
Article accepté pour publication ou publié
External document link
https://hal.archives-ouvertes.fr/hal-01721245
Date
2018
Journal name
Communications in Mathematical Physics
Volume
365
Number
1
Publisher
Springer
Pages
215-237
Publication identifier
10.1007/s00220-018-3251-4
Metadata
Show full item record
Author(s)
Bernardin, Cédric
Laboratoire Jean Alexandre Dieudonné [JAD]
Huveneers, François
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Olla, Stefano cc
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Abstract (EN)
We consider a one-dimensional unpinned chain of harmonic oscillators with random masses. We prove that after hyperbolic scaling of space and time the distributions of the elongation, momentum and energy converge to the solution of the Euler equations. Anderson localization decouples the mechanical modes from the thermal modes, allowing the closure of the energy conservation equation even out of thermal equilibrium. This example shows that the derivation of Euler equations rests primarily on scales separation and not on ergodicity.
Subjects / Keywords
Euler equations, Anderson localization; Hydrodynamic limits radom environment

Related items

Showing items related by title and author.

  • Thumbnail
    Small perturbation of a disordered harmonic chain by a noise and an anharmonic potential 
    Huveneers, François; Bernardin, Cédric (2013) Article accepté pour publication ou publié
  • Thumbnail
    Green-Kubo formula for weakly coupled systems with noise 
    Bernardin, Cédric; Huveneers, François; Lebowitz, Joel L.; Liverani, Carlangelo; Olla, Stefano (2015) Article accepté pour publication ou publié
  • Thumbnail
    Rigorous Scaling Law for the Heat Current in Disordered Harmonic Chain 
    Huveneers, François; Oskari, Ajanki (2011) Article accepté pour publication ou publié
  • Thumbnail
    Hydrodynamic Limit for an Anharmonic Chain under Boundary Tension 
    Marchesani, Stefano; Olla, Stefano (2018) Article accepté pour publication ou publié
  • Thumbnail
    Hydrodynamic limit for a chain with thermal and mechanical boundary forces 
    Komorowski, Tomasz; Olla, Stefano; Simon, Marielle (2021) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo