
Hydrodynamic Limit for a Disordered Harmonic Chain
Bernardin, Cédric; Huveneers, François; Olla, Stefano (2018), Hydrodynamic Limit for a Disordered Harmonic Chain, Communications in Mathematical Physics, 365, 1, p. 215-237. 10.1007/s00220-018-3251-4
View/ Open
Type
Article accepté pour publication ou publiéExternal document link
https://hal.archives-ouvertes.fr/hal-01721245Date
2018Journal name
Communications in Mathematical PhysicsVolume
365Number
1Publisher
Springer
Pages
215-237
Publication identifier
Metadata
Show full item recordAuthor(s)
Bernardin, CédricLaboratoire Jean Alexandre Dieudonné [LJAD]
Huveneers, François
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Olla, Stefano

CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Abstract (EN)
We consider a one-dimensional unpinned chain of harmonic oscillators with random masses. We prove that after hyperbolic scaling of space and time the distributions of the elongation, momentum and energy converge to the solution of the Euler equations. Anderson localization decouples the mechanical modes from the thermal modes, allowing the closure of the energy conservation equation even out of thermal equilibrium. This example shows that the derivation of Euler equations rests primarily on scales separation and not on ergodicity.Subjects / Keywords
Euler equations, Anderson localization; Hydrodynamic limits radom environmentRelated items
Showing items related by title and author.
-
Huveneers, François; Bernardin, Cédric (2013) Article accepté pour publication ou publié
-
Bernardin, Cédric; Huveneers, François; Lebowitz, Joel L.; Liverani, Carlangelo; Olla, Stefano (2015) Article accepté pour publication ou publié
-
Huveneers, François; Oskari, Ajanki (2011) Article accepté pour publication ou publié
-
Marchesani, Stefano; Olla, Stefano (2018) Article accepté pour publication ou publié
-
Komorowski, Tomasz; Olla, Stefano; Simon, Marielle (2021) Article accepté pour publication ou publié