• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

Biologically Inspired Dynamic Textures for Probing Motion Perception

Vacher, Jonathan; Meso, Andrew; Perrinet, Laurent U.; Peyré, Gabriel (2015), Biologically Inspired Dynamic Textures for Probing Motion Perception, Advances in Neural Information Processing Systems 28 (NIPS 2015), Proc. NIPS 2015, p. 17

View/Open
MotionClouds-NIPS(1).pdf (1.414Mb)
Type
Communication / Conférence
Date
2015
Conference title
Twenty-ninth Annual Conference on Neural Information Processing Systems (NIPS)
Conference date
2015-12
Conference city
Montreal
Conference country
Canada
Book title
Advances in Neural Information Processing Systems 28 (NIPS 2015)
Publisher
Proc. NIPS 2015
Pages
17
Metadata
Show full item record
Author(s)
Vacher, Jonathan
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Meso, Andrew
Institut de Neurosciences de la Timone [INT]
Perrinet, Laurent U. cc
Institut de Neurosciences de la Timone [INT]
Peyré, Gabriel
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Abstract (EN)
Perception is often described as a predictive process based on an optimal inference with respect to a generative model. We study here the principled construction of a generative model specifically crafted to probe motion perception. In that context, we first provide an axiomatic, biologically-driven derivation of the model. This model synthesizes random dynamic textures which are defined by stationary Gaussian distributions obtained by the random aggregation of warped patterns. Importantly, we show that this model can equivalently be described as a stochastic partial differential equation. Using this characterization of motion in images, it allows us to recast motion-energy models into a principled Bayesian inference framework. Finally, we apply these textures in order to psychophysically probe speed perception in humans. In this framework, while the likelihood is derived from the generative model, the prior is estimated from the observed results and accounts for the perceptual bias in a principled fashion.
Subjects / Keywords
motion; Texture synthesis; psychophysics; Bayesian inference; perception

Related items

Showing items related by title and author.

  • Thumbnail
    Bayesian Modeling of Motion Perception using Dynamical Stochastic Textures 
    Vacher, Jonathan; Meso, Andrew; Perrinet, Laurent U.; Peyré, Gabriel (2018) Article accepté pour publication ou publié
  • Thumbnail
    Synthèse de textures dynamiques pour l'étude de la vision en psychophysique et électrophysiologie 
    Vacher, Jonathan (2017-01-18) Thèse
  • Thumbnail
    The Heeger & Bergen Pyramid Based Texture Synthesis Algorithm 
    Briand, Thibaud; Vacher, Jonathan; Galerne, Bruno; Rabin, Julien (2014) Article accepté pour publication ou publié
  • Thumbnail
    Dynamic Texture Synthesis with Grouplets 
    Peyré, Gabriel (2008-04) Communication / Conférence
  • Thumbnail
    Compact Representations of Stationary Dynamic Textures 
    Aujol, Jean-François; Peyré, Gabriel; Ferradans, Sira; Xia, Gui-Song (2012) Communication / Conférence
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo