
Biologically Inspired Dynamic Textures for Probing Motion Perception
Vacher, Jonathan; Meso, Andrew; Perrinet, Laurent U.; Peyré, Gabriel (2015), Biologically Inspired Dynamic Textures for Probing Motion Perception, Advances in Neural Information Processing Systems 28 (NIPS 2015), Proc. NIPS 2015, p. 17
Voir/Ouvrir
Type
Communication / ConférenceDate
2015Titre du colloque
Twenty-ninth Annual Conference on Neural Information Processing Systems (NIPS)Date du colloque
2015-12Ville du colloque
MontrealPays du colloque
CanadaTitre de l'ouvrage
Advances in Neural Information Processing Systems 28 (NIPS 2015)Éditeur
Proc. NIPS 2015
Pages
17
Métadonnées
Afficher la notice complèteAuteur(s)
Vacher, JonathanCEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Meso, Andrew
Institut de Neurosciences de la Timone [INT]
Perrinet, Laurent U.

Institut de Neurosciences de la Timone [INT]
Peyré, Gabriel
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Résumé (EN)
Perception is often described as a predictive process based on an optimal inference with respect to a generative model. We study here the principled construction of a generative model specifically crafted to probe motion perception. In that context, we first provide an axiomatic, biologically-driven derivation of the model. This model synthesizes random dynamic textures which are defined by stationary Gaussian distributions obtained by the random aggregation of warped patterns. Importantly, we show that this model can equivalently be described as a stochastic partial differential equation. Using this characterization of motion in images, it allows us to recast motion-energy models into a principled Bayesian inference framework. Finally, we apply these textures in order to psychophysically probe speed perception in humans. In this framework, while the likelihood is derived from the generative model, the prior is estimated from the observed results and accounts for the perceptual bias in a principled fashion.Mots-clés
motion; Texture synthesis; psychophysics; Bayesian inference; perceptionPublications associées
Affichage des éléments liés par titre et auteur.
-
Vacher, Jonathan; Meso, Andrew; Perrinet, Laurent U.; Peyré, Gabriel (2018) Article accepté pour publication ou publié
-
Vacher, Jonathan (2017-01-18) Thèse
-
Briand, Thibaud; Vacher, Jonathan; Galerne, Bruno; Rabin, Julien (2014) Article accepté pour publication ou publié
-
Peyré, Gabriel (2008-04) Communication / Conférence
-
Aujol, Jean-François; Peyré, Gabriel; Ferradans, Sira; Xia, Gui-Song (2012) Communication / Conférence