
Stochastic invariance of closed sets with non-Lipschitz coefficients
Abi Jaber, Eduardo; Bouchard, Bruno; Illand, Camille (2019), Stochastic invariance of closed sets with non-Lipschitz coefficients, Stochastic Processes and their Applications, 129, 5, p. 1726-1748. 10.1016/j.spa.2018.06.003
View/ Open
Type
Article accepté pour publication ou publiéExternal document link
https://hal.archives-ouvertes.fr/hal-01349639Date
2019Journal name
Stochastic Processes and their ApplicationsVolume
129Number
5Publisher
Elsevier
Pages
1726-1748
Publication identifier
Metadata
Show full item recordAbstract (EN)
This paper provides a new characterization of the stochastic invariance of a closed subset of R^d with respect to a diffusion. We extend the well-known inward pointing Stratonovich drift condition to the case where the diffusion matrix can fail to be differentiable: we only assume that the covariance matrix is. In particular, our result can be directly applied to construct affine diffusions and polynomial preserving diffusions on any arbitrary closed set.Subjects / Keywords
affine diffusions; polynomial preserving diffusions; stochastic invariance; Stochastic differential equationRelated items
Showing items related by title and author.
-
Abi Jaber, Eduardo (2017) Article accepté pour publication ou publié
-
Abi Jaber, Eduardo (2018-10-18) Thèse
-
Abi jaber, Eduardo; El Euch, Omar (2019) Article accepté pour publication ou publié
-
Abi Jaber, Eduardo; El Euch, Omar (2019) Article accepté pour publication ou publié
-
Bouchard, Bruno; Tan, Xiaolu; Warin, Xavier (2019) Article accepté pour publication ou publié