
Variational and viscosity operators for the evolutionary Hamilton–Jacobi equation
Roos, Valentine (2018), Variational and viscosity operators for the evolutionary Hamilton–Jacobi equation, Communications in Contemporary Mathematics, p. 1-67. 10.1142/S0219199718500189
View/ Open
Type
Article accepté pour publication ou publiéExternal document link
https://hal.archives-ouvertes.fr/hal-01637617Date
2018Journal name
Communications in Contemporary MathematicsPages
1-67
Publication identifier
Metadata
Show full item recordAuthor(s)
Roos, ValentineCEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Département de Mathématiques et Applications - ENS Paris [DMA]
Unité de Mathématiques Pures et Appliquées [UMPA-ENSL]
Abstract (EN)
We study the Cauchy problem for the first order evolutive Hamilton-Jacobi equation with a Lipschitz initial condition. The Hamiltonian is not necessarily convex in the momentum variable and not a priori compactly supported. We build and study an operator giving a variational solution of this problem, and get local Lipschitz estimates on this operator. Iterating this variational operator we obtain the viscosity operator and extend the estimates to the viscosity framework. We also check that the construction of the variational operator gives the Lax-Oleinik semigroup if the Hamiltonian is convex or concave in the momentum variable.Subjects / Keywords
Hamilton–Jacobi equation; variational solution; viscosity solution; minmax selector; Lax-Oleinik semigroupRelated items
Showing items related by title and author.
-
Roos, Valentine (2017-06-30) Thèse
-
Cardaliaguet, Pierre; Rainer, Catherine (2011) Article accepté pour publication ou publié
-
Koike, Shigeaki (1997) Article accepté pour publication ou publié
-
Cannarsa, Piermarco; Cardaliaguet, Pierre (2010) Article accepté pour publication ou publié
-
Frankowska, Halina (1989) Article accepté pour publication ou publié