Wealth-Path Dependent Utility Maximization in Incomplete Markets
Bouchard, Bruno; Pham, Huyen (2004), Wealth-Path Dependent Utility Maximization in Incomplete Markets, Finance and Stochastics, 8, 4, p. 579-603. http://dx.doi.org/10.1007/s00780-004-0125-8
Type
Article accepté pour publication ou publiéDate
2004Journal name
Finance and StochasticsVolume
8Number
4Publisher
Springer
Pages
579-603
Publication identifier
Metadata
Show full item recordAbstract (EN)
Motivated by an optimal investment problem under time horizon uncertainty and when default may occur, we study a general structure for an incomplete semimartingale model extending the classical terminal wealth utility maximization problem. This modelling leads to the formulation of a wealth-path dependent utility maximization problem. Our main result is an extension of the well-known dual formulation to this context. In contrast with the usual duality approach, we work directly on the primal problem. Sufficient conditions for characterizing the optimal solution are also provided in the case of complete markets, and are illustrated by examples.Subjects / Keywords
random time horizon; incomplete markets; convex duality; Mathematical Finance; Utility maximizationRelated items
Showing items related by title and author.
-
Bouchard, Bruno; Pham, Huyen (2005) Article accepté pour publication ou publié
-
Option Pricing via Utility Maximization in the presence of Transaction Costs: an Asymptotic Analysis Bouchard, Bruno (2000) Document de travail / Working paper
-
Zhegal, Amina; Touzi, Nizar; Bouchard, Bruno (2004) Article accepté pour publication ou publié
-
Bouchard, Bruno (2002) Article accepté pour publication ou publié
-
Bouchard, Bruno; Muhle-Karbe, J. (2022) Article accepté pour publication ou publié