• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Aide
  • Connexion
  • Langue 
    • Français
    • English
Consulter le document 
  •   Accueil
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • Consulter le document
  •   Accueil
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • Consulter le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Afficher

Toute la baseCentres de recherche & CollectionsAnnée de publicationAuteurTitreTypeCette collectionAnnée de publicationAuteurTitreType

Mon compte

Connexion

Enregistrement

Statistiques

Documents les plus consultésStatistiques par paysAuteurs les plus consultés
Thumbnail - Request a copy

Two-edge connected subgraph with bounded rings problem: Polyhedral results and Branch-and-Cut

Pesneau, Pierre; Mahjoub, Ali Ridha; McCormick, S. Thomas; Fortz, bernard (2006), Two-edge connected subgraph with bounded rings problem: Polyhedral results and Branch-and-Cut, Mathematical Programming, 105, 1, p. 85-111. http://dx.doi.org/10.1007/s10107-005-0576-5

Type
Article accepté pour publication ou publié
Date
2006
Nom de la revue
Mathematical Programming
Volume
105
Numéro
1
Éditeur
Springer
Pages
85-111
Identifiant publication
http://dx.doi.org/10.1007/s10107-005-0576-5
Métadonnées
Afficher la notice complète
Auteur(s)
Pesneau, Pierre

Mahjoub, Ali Ridha

McCormick, S. Thomas

Fortz, bernard
Résumé (EN)
We consider the network design problem which consists in determining at minimum cost a 2-edge connected network such that the shortest cycle (a “ring”) to which each edge belongs, does not exceed a given length K. We identify a class of inequalities, called cycle inequalities, valid for the problem and show that these inequalities together with the so-called cut inequalities yield an integer programming formulation of the problem in the space of the natural design variables. We then study the polytope associated with that problem and describe further classes of valid inequalities. We give necessary and sufficient conditions for these inequalities to be facet defining. We study the separation problem associated with these inequalities. In particular, we show that the cycle inequalities can be separated in polynomial time when K≤4. We develop a Branch-and-Cut algorithm based on these results and present extensive computational results.
Mots-clés
Network models, deterministic; Combinatorial optimization; Polyhedral combinatorics, branch-and-bound, branch-and-cut

Publications associées

Affichage des éléments liés par titre et auteur.

  • Vignette de prévisualisation
    The Two-Edge Connected Hop-Constrained Network Design Problem : Valid Inequalities and Branch-and-Cut 
    Pesneau, Pierre; Mahjoub, Ali Ridha; Labbé, Martine; Huygens, David (2007) Article accepté pour publication ou publié
  • Vignette de prévisualisation
    The k-node connected subgraph problem: Polyhedral analysis and Branch-and-Cut 
    Diarrassouba, Ibrahima; Mahjoub, Meriem; Mahjoub, Ali Ridha; Taktak, Raouia (2016) Article accepté pour publication ou publié
  • Vignette de prévisualisation
    A Branch-and-Cut algorithm for the k-edge connected subgraph problem 
    Mailfert, Jean; Mahjoub, Ali Ridha; Didi Biha, Mohamed; Ibrahima, Diarrassouba; Bendali, Fatiha (2010) Article accepté pour publication ou publié
  • Vignette de prévisualisation
    Two Edge-Disjoint Hop-Constrained Paths: Valid Inequalities and Branch-and-Cut 
    Huygens, David; Labbé, Martine; Mahjoub, Ali Ridha; Pesneau, Pierre (2005) Communication / Conférence
  • Vignette de prévisualisation
    The survivable k-node-connected network design problem: Valid inequalities and Branch-and-Cut 
    Mahjoub, Meriem; Diarrassouba, Ibrahima; Mahjoub, Ali Ridha; Taktak, Raouia (2017) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Tél. : 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo