Show simple item record

hal.structure.identifier
dc.contributor.authorBorrelli, William*
dc.date.accessioned2019-01-11T10:31:57Z
dc.date.available2019-01-11T10:31:57Z
dc.date.issued2018
dc.identifier.issn0944-2669
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/18364
dc.language.isoenen
dc.subjectmathématiques
dc.subjectnonlinear Dirac equations
dc.subject.ddc515en
dc.titleWeakly localized states for nonlinear Dirac equations
dc.typeArticle accepté pour publication ou publié
dc.description.abstractenWe prove the existence of infinitely many non square-integrable stationary solutions for a family of massless Dirac equations in 2D. They appear as effective equations in two dimensional honeycomb structures. We give a direct existence proof thanks to a particular radial ansatz, which also allows to provide the exact asymptotic behavior of spinor components. Moreover, those solutions admit a variational characterization. We also indicate how the content of the present paper allows to extend our previous results for the massive case [5] to more general nonlinearities.
dc.relation.isversionofjnlnameCalculus of Variations and Partial Differential Equations
dc.relation.isversionofjnlvol157
dc.relation.isversionofjnlissue6
dc.relation.isversionofjnldate2018
dc.relation.isversionofjnlpagesarticle: 155
dc.relation.isversionofdoi10.1007/s00526-018-1420-0
dc.relation.isversionofjnlpublisherSpringer
dc.subject.ddclabelAnalyseen
dc.relation.forthcomingnonen
dc.relation.forthcomingprintnonen
dc.description.ssrncandidatenon
dc.description.halcandidatenon
dc.description.readershiprecherche
dc.description.audienceInternational
dc.relation.Isversionofjnlpeerreviewedoui
dc.date.updated2019-02-21T10:03:49Z
hal.author.functionaut


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record