
KAM, α -Gevrey regularity and the α -Bruno-Rüssmann condition
Bounemoura, Abed; Féjoz, Jacques (2017), KAM, α -Gevrey regularity and the α -Bruno-Rüssmann condition, Annali della Scuola Normale Superiore di Pisa. Classe di Scienze, p. 53. 10.2422/2036-2145.201707_009
View/ Open
Type
Article accepté pour publication ou publiéDate
2017-06Journal name
Annali della Scuola Normale Superiore di Pisa. Classe di ScienzePublisher
Stampacchia Guido
Pages
53
Publication identifier
Metadata
Show full item recordAuthor(s)
Bounemoura, AbedCEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Institut de Mécanique Céleste et de Calcul des Ephémérides [IMCCE]
Féjoz, Jacques
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Institut de Mécanique Céleste et de Calcul des Ephémérides [IMCCE]
Abstract (EN)
We prove a new invariant torus theorem, for α-Gevrey smooth Hamiltonian systems , under an arithmetic assumption which we call the α-Bruno-Rüssmann condition , and which reduces to the classical Bruno-Rüssmann condition in the analytic category. Our proof is direct in the sense that, for analytic Hamiltonians, we avoid the use of complex extensions and, for non-analytic Hamiltonians, we do not use analytic approximation nor smoothing operators. Following Bessi, we also show that if a slightly weaker arithmetic condition is not satisfied, the invariant torus may be destroyed. Crucial to this work are new functional estimates in the Gevrey class.Subjects / Keywords
Hamiltonian systems; Gevrey class; Bruno-R£ussmann vectors; stability; KAM theoryRelated items
Showing items related by title and author.
-
Bounemoura, Abed (2022) Article accepté pour publication ou publié
-
Bounemoura, Abed; Féjoz, Jacques (2021) Ouvrage
-
Bounemoura, Abed (2014) Article accepté pour publication ou publié
-
Bounemoura, Abed (2020) Document de travail / Working paper
-
Fischler, Stephane; Bounemoura, Abed (2014) Article accepté pour publication ou publié