• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

Mixing time and cutoff for the weakly asymmetric simple exclusion process

Labbé, Cyril; Lacoin, Hubert (2020), Mixing time and cutoff for the weakly asymmetric simple exclusion process, Annals of Applied Probability, 30, 4, p. 1847-1883. 10.1214/19-AAP1545

View/Open
1805.12213.pdf (373.2Kb)
Type
Article accepté pour publication ou publié
Date
2020
Journal name
Annals of Applied Probability
Volume
30
Number
4
Publisher
Institute of Mathematical Statistics
Pages
1847-1883
Publication identifier
10.1214/19-AAP1545
Metadata
Show full item record
Author(s)
Labbé, Cyril
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Lacoin, Hubert
Instituto Nacional de Matemática Pura e Aplicada [IMPA]
Abstract (EN)
We consider the simple exclusion process with k particles on a segment of length N performing random walks with transition p>1/2 to the right and q=1−p to the left. We focus on the case where the asymmetry in the jump rates b=p−q>0 vanishes in the limit when N and k tend to infinity, and obtain sharp asymptotics for the mixing times of this sequence of Markov chains in the two cases where the asymmetry is either much larger or much smaller than (logk)/N. We show that in the former case (b≫(logk)/N), the mixing time corresponds to the time needed to reach macroscopic equilibrium, like for the strongly asymmetric (i.e.\ constant b) case studied in [LL18], while the latter case (b≪(logk)/N) macroscopic equilibrium is not sufficient for mixing and one must wait till local fluctuations equilibrate, similarly to what happens in the symmetric case worked out in [Lac16b]. In both cases, convergence to equilibrium is abrupt: we have a cutoff phenomenon for the total-variation distance. We present a conjecture for the remaining regime when the asymmetry is of order (logk)/N.
Subjects / Keywords
Exclusion process; WASEP; Mixing time; Cutoff

Related items

Showing items related by title and author.

  • Thumbnail
    Cutoff phenomenon for the asymmetric simple exclusion process and the biased card shuffling 
    Labbé, Cyril; Lacoin, Hubert (2019) Article accepté pour publication ou publié
  • Thumbnail
    Mixing time and cutoff for the adjacent transposition shuffle and the simple exclusion 
    Lacoin, Hubert (2016) Article accepté pour publication ou publié
  • Thumbnail
    Mixing time of the adjacent walk on the simplex 
    Caputo, Pietro; Labbé, Cyril; Lacoin, Hubert (2020) Article accepté pour publication ou publié
  • Thumbnail
    Cutoff phenomenon for the simple exclusion process on the complete graph 
    Lacoin, Hubert; Leblond, Rémi (2011) Article accepté pour publication ou publié
  • Thumbnail
    Spectral gap and cutoff phenomenon for the Gibbs sampler of ∇φ interfaces with convex potential 
    Caputo, Pietro; Labbé, Cyril; Lacoin, Hubert (2022) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo