
Approximation of variational problems with a convexity constraint by PDEs of Abreu type
Carlier, Guillaume; Radice, Teresa (2019), Approximation of variational problems with a convexity constraint by PDEs of Abreu type, Calculus of Variations and Partial Differential Equations, 58, p. 16. 10.1007/s00526-019-1613-1
Voir/Ouvrir
Type
Article accepté pour publication ou publiéDate
2019Nom de la revue
Calculus of Variations and Partial Differential EquationsVolume
58Pages
16
Identifiant publication
Métadonnées
Afficher la notice complèteAuteur(s)
Carlier, GuillaumeCEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Radice, Teresa
Dipartimento di Matematica e Applicazioni “Renato Caccioppoli”
Résumé (EN)
Motivated by some variational problems subject to a convexity constraint, we consider an approximation using the logarithm of the Hessian determinant as a barrier for the constraint. We show that the minimizer of this penalization can be approached by solving a second boundary value problem for Abreu's equation which is a well-posed nonlinear fourth-order elliptic problem. More interestingly, a similar approximation result holds for the initial constrained variational problem.Mots-clés
Abreu equation; Monge-Ampère operator; calculus of varia-; tions with a convexity constraintPublications associées
Affichage des éléments liés par titre et auteur.
-
Lachand-Robert, Thomas; Carlier, Guillaume (2001) Article accepté pour publication ou publié
-
Carlier, Guillaume; Lachand-Robert, Thomas; Maury, Bertrand (2001) Article accepté pour publication ou publié
-
Carlier, Guillaume; Dupuis, Xavier (2017) Article accepté pour publication ou publié
-
Carlier, Guillaume (2002) Article accepté pour publication ou publié
-
Dana, Rose-Anne; Carlier, Guillaume (2006) Article accepté pour publication ou publié