hal.structure.identifier | CEntre de REcherches en MAthématiques de la DEcision [CEREMADE] | |
dc.contributor.author | Carlier, Guillaume | |
hal.structure.identifier | Dipartimento di Matematica e Applicazioni “Renato Caccioppoli” | |
dc.contributor.author | Radice, Teresa | |
dc.date.accessioned | 2019-02-20T16:31:26Z | |
dc.date.available | 2019-02-20T16:31:26Z | |
dc.date.issued | 2019 | |
dc.identifier.issn | 0944-2669 | |
dc.identifier.uri | https://basepub.dauphine.fr/handle/123456789/18467 | |
dc.language.iso | en | en |
dc.subject | Abreu equation | |
dc.subject | Monge-Ampère operator | |
dc.subject | calculus of varia- | |
dc.subject | tions with a convexity constraint | |
dc.subject.ddc | 515 | en |
dc.title | Approximation of variational problems with a convexity constraint by PDEs of Abreu type | |
dc.type | Article accepté pour publication ou publié | |
dc.description.abstracten | Motivated by some variational problems subject to a convexity constraint, we consider an approximation using the logarithm of the Hessian determinant as a barrier for the constraint. We show that the minimizer of this penalization can be approached by solving a second boundary value problem for Abreu's equation which is a well-posed nonlinear fourth-order elliptic problem. More interestingly, a similar approximation result holds for the initial constrained variational problem. | |
dc.relation.isversionofjnlname | Calculus of Variations and Partial Differential Equations | |
dc.relation.isversionofjnlvol | 58 | |
dc.relation.isversionofjnldate | 2019 | |
dc.relation.isversionofjnlpages | 16 | |
dc.relation.isversionofdoi | 10.1007/s00526-019-1613-1 | |
dc.subject.ddclabel | Analyse | en |
dc.description.ssrncandidate | non | |
dc.description.halcandidate | non | |
dc.description.readership | recherche | |
dc.description.audience | International | |
dc.relation.Isversionofjnlpeerreviewed | oui | |
dc.date.updated | 2023-02-22T10:41:02Z | |
hal.author.function | aut | |
hal.author.function | aut | |