
Propagation of Moments and Semiclassical Limit from Hartree to Vlasov Equation
Lafleche, Laurent (2019), Propagation of Moments and Semiclassical Limit from Hartree to Vlasov Equation, Journal of Statistical Physics, 177, p. 20–60. 10.1007/s10955-019-02356-7
View/ Open
Type
Article accepté pour publication ou publiéDate
2019Journal name
Journal of Statistical PhysicsVolume
177Publisher
Springer
Pages
20–60
Publication identifier
Metadata
Show full item recordAuthor(s)
Lafleche, LaurentCentre de Mathématiques Laurent Schwartz [CMLS]
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Abstract (EN)
In this paper, we prove a quantitative version of the semiclassical limit from the Hartree to the Vlasov equation with singular interaction, including the Coulomb potential. To reach this objective, we also prove the propagation of velocity moments and weighted Schatten norms which implies the boundedness of the space density of particles uniformly in the Planck constant .Subjects / Keywords
Hartree equation; Nonlinear Schrödinger equation; Vlasov equation; Coulomb interaction; Gravitational interaction; Semiclassical limit; Équation de Hartree; Équation de Schrödinger nonlinéaire; Équation de Vlasov; Intéraction Coulombienne; Intéraction gravitationnelle; Limite semi-classiqueRelated items
Showing items related by title and author.
-
Lafleche, Laurent (2021) Article accepté pour publication ou publié
-
Lions, Pierre-Louis; Perthame, Benoît (1991) Article accepté pour publication ou publié
-
Gondran, Alexandre; Gondran, Michel (2011) Communication / Conférence
-
Lewin, Mathieu; Sabin, Julien (2020) Article accepté pour publication ou publié
-
Schonbek, Maria E.; Schonbek, Tomas P. (2000) Article accepté pour publication ou publié