
Compactness of molecular reaction paths in quantum mechanics
Anapolitanos, Ioannis; Lewin, Mathieu (2020), Compactness of molecular reaction paths in quantum mechanics, Archive for Rational Mechanics and Analysis, 236, p. 505–576. 10.1007/s00205-019-01475-5
View/ Open
Type
Article accepté pour publication ou publiéDate
2020Journal name
Archive for Rational Mechanics and AnalysisNumber
236Publisher
Springer
Pages
505–576
Publication identifier
Metadata
Show full item recordAuthor(s)
Anapolitanos, IoannisKarlsruhe Institute of Technology (KIT), Karlsruhe and Garmisch-Partenkirchen, Germany
Lewin, Mathieu

CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Abstract (EN)
We study isomerizations in quantum mechanics. We consider a neutral molecule composed of N quantum electrons and M classical nuclei and assume that the first eigenvalue of the corresponding N-particle Schrödinger operator possesses two local minima with respect to the locations of the nuclei. An isomerization is a mountain pass problem between these two local configurations, where one minimizes over all possible paths the highest value of the energy along the paths. Here we state a conjecture about the compactness of min-maxing sequences of such paths, which we then partly solve in the particular case of a molecule composed of two rigid sub-molecules that can move freely in space. More precisely, under appropriate assumptions on the multipoles of the two molecules, we are able to prove that the distance between them stays bounded during the whole chemical reaction. We obtain a critical point at the mountain pass level, which is called a transition state in chemistry. Our method requires to study the critical points and the Morse indices of the classical multipole interactions, as well as to improve existing results about the van der Waals force. This paper generalizes previous works by the second author in several directions.Subjects / Keywords
isomerizations; quantum mechanicsRelated items
Showing items related by title and author.
-
Hainzl, Christian; Lewin, Mathieu; Séré, Eric (2009) Article accepté pour publication ou publié
-
Esteban, Maria J.; Lewin, Mathieu; Séré, Eric (2008) Article accepté pour publication ou publié
-
Lewin, Mathieu; Nam, Phan Thành; Rougerie, Nicolas (2015) Article accepté pour publication ou publié
-
Solovej, Jan Philip; Séré, Eric; Lewin, Mathieu; Hainzl, Christian (2007-06) Article accepté pour publication ou publié
-
Lewin, Mathieu (2004) Article accepté pour publication ou publié