• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

Strong solution for Korteweg system in bmo−1(\RN) with initial density in L∞

Haspot, Boris (2018), Strong solution for Korteweg system in bmo−1(\RN) with initial density in L∞. https://basepub.dauphine.fr/handle/123456789/18485

View/Open
155109667736582.pdf (444.5Kb)
Type
Document de travail / Working paper
External document link
https://hal.archives-ouvertes.fr/hal-01882936
Date
2018
Series title
Cahier de recherche CEREMADE, Université Paris-Dauphine
Pages
29
Metadata
Show full item record
Author(s)
Haspot, Boris
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Inria de Paris
Abstract (EN)
In this paper we investigate the question of the existence of strong solution in finite time for the Korteweg system for small initial data provided that the initial momentum ρ 0 u 0 belongs to bmo −1 T (R N) for T > 0 and the initial density ρ 0 is in L ∞ (R N) with N ≥ 1 and far away from the vacuum. This result extends the so called Koch-Tataru theorem for the Korteweg system. It is also interesting to observe that any initial shock on the density is instantaneously regularized inasmuch as the density becomes Lipschitz for any ρ(t, ·) with t > 0. We also prove the existence of global strong solution for initial data (ρ 0 − 1, ρ 0 u 0) ∈ (B N 2 −1 2,∞ (R N) ∩ B N 2 2,∞ (R N)∩L ∞ (R N))×(B N 2 −1 2,∞ (R N)) N. This result allows in particular to extend the notion of Oseen solution (corresponding to particular solution of the incompressible Navier Stokes system in dimension N = 2) to the Korteweg system provided that the vorticity of the momentum ρ 0 u 0 is a Dirac mass αδ 0 with α sufficiently small. IHowever unlike the Navier Stokes equations the property of self similarity is not conserved for the Korteweg system since there is no invariance by scaling because the term of pressure.
Subjects / Keywords
Korteweg system; Koch-Tataru theorem

Related items

Showing items related by title and author.

  • Thumbnail
    Strong solution for Korteweg system in bmo−1(\RN) with initial density in L∞ 
    Haspot, Boris (2020) Article accepté pour publication ou publié
  • Thumbnail
    Global bmo −1 (R N ) radially symmetric solution for compressible Navier-Stokes equations with initial density in L ∞ (R N ) 
    Haspot, Boris (2019) Document de travail / Working paper
  • Thumbnail
    Existence of global strong solution for Korteweg system with large infinite energy initial data 
    Haspot, Boris (2016) Article accepté pour publication ou publié
  • Thumbnail
    From Gross-Pitaevskii equation to Euler Korteweg system, existence of global strong solutions with small irrotational initial data 
    Audiard, Corentin; Haspot, Boris (2017) Article accepté pour publication ou publié
  • Thumbnail
    Global strong solution for the Korteweg system with quantum pressure in dimension N ≥ 2 
    Haspot, Boris (2016) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo