
Strong solution for Korteweg system in bmo−1(\RN) with initial density in L∞
Haspot, Boris (2018), Strong solution for Korteweg system in bmo−1(\RN) with initial density in L∞. https://basepub.dauphine.fr/handle/123456789/18485
View/ Open
Type
Document de travail / Working paperExternal document link
https://hal.archives-ouvertes.fr/hal-01882936Date
2018Series title
Cahier de recherche CEREMADE, Université Paris-DauphinePages
29
Metadata
Show full item recordAuthor(s)
Haspot, BorisCEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Inria de Paris
Abstract (EN)
In this paper we investigate the question of the existence of strong solution in finite time for the Korteweg system for small initial data provided that the initial momentum ρ 0 u 0 belongs to bmo −1 T (R N) for T > 0 and the initial density ρ 0 is in L ∞ (R N) with N ≥ 1 and far away from the vacuum. This result extends the so called Koch-Tataru theorem for the Korteweg system. It is also interesting to observe that any initial shock on the density is instantaneously regularized inasmuch as the density becomes Lipschitz for any ρ(t, ·) with t > 0. We also prove the existence of global strong solution for initial data (ρ 0 − 1, ρ 0 u 0) ∈ (B N 2 −1 2,∞ (R N) ∩ B N 2 2,∞ (R N)∩L ∞ (R N))×(B N 2 −1 2,∞ (R N)) N. This result allows in particular to extend the notion of Oseen solution (corresponding to particular solution of the incompressible Navier Stokes system in dimension N = 2) to the Korteweg system provided that the vorticity of the momentum ρ 0 u 0 is a Dirac mass αδ 0 with α sufficiently small. IHowever unlike the Navier Stokes equations the property of self similarity is not conserved for the Korteweg system since there is no invariance by scaling because the term of pressure.Subjects / Keywords
Korteweg system; Koch-Tataru theoremRelated items
Showing items related by title and author.
-
Haspot, Boris (2020) Article accepté pour publication ou publié
-
Haspot, Boris (2019) Document de travail / Working paper
-
Haspot, Boris (2016) Article accepté pour publication ou publié
-
Audiard, Corentin; Haspot, Boris (2017) Article accepté pour publication ou publié
-
Haspot, Boris (2016) Article accepté pour publication ou publié