• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

A Long-Term Mathematical Model for Mining Industries

Achdou, Yves; Giraud, Pierre-Noël; Lasry, Jean-Michel; Lions, Pierre-Louis (2016), A Long-Term Mathematical Model for Mining Industries, Applied Mathematics and Optimization, 74, 3, p. 579–618. 10.1007/s00245-016-9390-0

View/Open
MFG_mining8.pdf (3.220Mb)
Type
Article accepté pour publication ou publié
Date
2016
Journal name
Applied Mathematics and Optimization
Volume
74
Number
3
Publisher
Springer
Pages
579–618
Publication identifier
10.1007/s00245-016-9390-0
Metadata
Show full item record
Author(s)
Achdou, Yves
Laboratoire Jacques-Louis Lions [LJLL (UMR_7598)]
Giraud, Pierre-Noël
Centre d'économie industrielle i3 [CERNA i3]
Lasry, Jean-Michel
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Lions, Pierre-Louis
Abstract (EN)
A parcimonious long term model is proposed for a mining industry. Knowing the dynamics of the global reserve, the strategy of each production unit consists of an optimal control problem with two controls, first the flux invested into prospection and the building of new extraction facilities, second the production rate. In turn, the dynamics of the global reserve depends on the individual strategies of the producers, so the models leads to an equilibrium, which is described by low dimensional systems of partial differential equations. The dimen-sionality depends on the number of technologies that a mining producer can choose. In some cases, the systems may be reduced to a Hamilton-Jacobi equation which is degenerate at the boundary and whose right hand side may blow up at the boundary. A mathematical analysis is supplied. Then numerical simulations for models with one or two technologies are described. In particular, a numerical calibration of the model in order to fit the historical data is carried out.
Subjects / Keywords
Heterogeneous agents model; Mean field games; Master equation; Hamilton Jacobi equations; Viscosity solution; Model calibration

Related items

Showing items related by title and author.

  • Thumbnail
    Instantaneous self-fulfilling of long-term prophecies on the probabilistic distribution of financial asset values 
    Lasry, Jean-Michel; Lions, Pierre-Louis (2007) Article accepté pour publication ou publié
  • Thumbnail
    A class of short-term models for the oil industry addressing speculative storage 
    Achdou, Yves; Bertucci, Charles; Lasry, Jean-Michel; Lions, Pierre-Louis; Rostand, Antoine; Scheinkman, José (2020) Document de travail / Working paper
  • Thumbnail
    Partial differential equation models in macroeconomics 
    Achdou, Yves; Buera, Francisco J.; Lasry, Jean-Michel; Lions, Pierre-Louis; Moll, Benjamin (2014) Article accepté pour publication ou publié
  • Thumbnail
    Paris-Princeton Lectures on Mathematical Finance 2010 
    Cousin, Areski; Crépey, Stéphane; Guéant, Olivier; Hobson, David; Jeanblanc, Monique; Lasry, Jean-Michel; Laurent, Jean-Paul; Lions, Pierre-Louis; Tankov, Peter (2011) Ouvrage
  • Thumbnail
    Long time average of mean field games 
    Cardaliaguet, Pierre; Lasry, Jean-Michel; Lions, Pierre-Louis; Porretta, Alessio (2012) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo