• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - Request a copy

Scale Genetic Programming for large Data Sets: Case of Higgs Bosons Classification

Hmida, Hmida; Ben Hamida, Sana; Borgi, Amel; Rukoz, Marta (2018), Scale Genetic Programming for large Data Sets: Case of Higgs Bosons Classification, Procedia Computer Science, 126, p. 302-311. 10.1016/j.procs.2018.07.264

Type
Article accepté pour publication ou publié
Date
2018
Journal name
Procedia Computer Science
Volume
126
Publisher
Elsevier
Pages
302-311
Publication identifier
10.1016/j.procs.2018.07.264
Metadata
Show full item record
Author(s)
Hmida, Hmida
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Ben Hamida, Sana cc
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Borgi, Amel
Laboratoire d'Informatique, Programmation, Algorithmique et Heuristique [LIPAH]
Rukoz, Marta
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Abstract (EN)
Extract knowledge and significant information from very large data sets is a main topic in Data Science, bringing the interest of researchers in machine learning field. Several machine learning techniques have proven effective to deal with massive data like Deep Neuronal Networks. Evolutionary algorithms are considered not well suitable for such problems because of their relatively high computational cost. This work is an attempt to prove that, with some extensions, evolutionary algorithms could be an interesting solution to learn from very large data sets. We propose the use of the Cartesian Genetic Programming (CGP) as meta-heuristic approach to learn from the Higgs big data set. CGP is extended with an active sampling technique in order to help the algorithm to deal with the mass of the provided data. The proposed method is able to take up the challenge of dealing with the complete benchmark data set of 11 million events and produces satisfactory preliminary results.
Subjects / Keywords
Cartesian Genetic Programming; Active Sampling; Higgs Bosons Classification; large dataset; Machine Learning

Related items

Showing items related by title and author.

  • Thumbnail
    Genetic Programming over Spark for Higgs Boson Classification 
    Hmida, Hmida; Ben Hamida, Sana; Borgi, Amel; Rukoz, Marta (2019) Communication / Conférence
  • Thumbnail
    Hierarchical Data Topology Based Selection for Large Scale Learning 
    Hmida, Hmida; Ben Hamida, Sana; Borgi, Amel; Rukoz, Marta (2016) Communication / Conférence
  • Thumbnail
    Sampling Methods in Genetic Programming Learners from Large Datasets: A Comparative Study 
    Hmida, Hmida; Ben Hamida, Sana; Borgi, Amel; Rukoz, Marta (2017) Communication / Conférence
  • Thumbnail
    A new adaptive sampling approach for Genetic Programming 
    Hmida, Hmida; Ben Hamida, Sana; Borgi, Amel; Rukoz, Marta (2019) Communication / Conférence
  • Thumbnail
    Adaptive sampling for active learning with genetic programming 
    Ben Hamida, Sana; Hmida, Hmida; Borgi, Amel; Rukoz, Marta (2019) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo