• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

Symmetry results in two-dimensional inequalities for Aharonov-Bohm magnetic fields

Bonheure, Denis; Dolbeault, Jean; Esteban, Maria J.; Laptev, Ari; Loss, Michael (2019), Symmetry results in two-dimensional inequalities for Aharonov-Bohm magnetic fields, Communications in Mathematical Physics, p. 17. 10.1007/s00220-019-03560-y

View/Open
HS-magnetic-sharp.pdf (394.5Kb)
Type
Article accepté pour publication ou publié
External document link
https://hal.archives-ouvertes.fr/hal-02003872
Date
2019
Journal name
Communications in Mathematical Physics
Publisher
Springer
Published in
Paris
Pages
17
Publication identifier
10.1007/s00220-019-03560-y
Metadata
Show full item record
Author(s)
Bonheure, Denis
Dolbeault, Jean cc
Esteban, Maria J. cc
Laptev, Ari
Loss, Michael
Abstract (EN)
This paper is devoted to the symmetry and symmetry breaking properties of a two-dimensional magnetic Schrödinger operator involving an Aharonov-Bohm magnetic vector potential. We investigate the symmetry properties of the optimal potential for the corresponding magnetic Keller-Lieb-Thir-ring inequality. We prove that this potential is radially symmetric if the intensity of the magnetic field is below an explicit threshold, while symmetry is broken above a second threshold corresponding to a higher magnetic field. The method relies on the study of the magnetic kinetic energy of the wave function and amounts to study the symmetry properties of the optimal functions in a magnetic Hardy-Sobolev interpolation inequality. We give a quantified range of symmetry by a non-perturbative method. To establish the symmetry breaking range, we exploit the coupling of the phase and of the modulus and also obtain a quantitative result.
Subjects / Keywords
Hardy-Sobolev inequalities; Caffarelli-Kohn-Nirenberg inequalities; magnetic rings; magnetic Schrödinger operator; Aharonov-Bohm magnetic potential; radial symmetry; symmetry breaking; magnetic Hardy-Sobolev inequality; magnetic interpolation inequality; optimal constants

Related items

Showing items related by title and author.

  • Thumbnail
    Inequalities involving Aharonov-Bohm magnetic potentials in dimensions 2 and 3 
    Bonheure, Denis; Dolbeault, Jean; Esteban, Maria J.; Laptev, Ari; Loss, Michael (2020) Article accepté pour publication ou publié
  • Thumbnail
    Interpolation inequalities and spectral estimates for magnetic operators 
    Dolbeault, Jean; Esteban, Maria J.; Laptev, Ari; Loss, Michael (2018) Article accepté pour publication ou publié
  • Thumbnail
    One-dimensional Gagliardo-Nirenberg-Sobolev inequalities: Remarks on duality and flows 
    Dolbeault, Jean; Esteban, Maria J.; Laptev, Ari; Loss, Michael (2014) Article accepté pour publication ou publié
  • Thumbnail
    Rigidity results for semilinear elliptic equations with exponential nonlinearities and Moser-Trudinger-Onofri inequalities on two-dimensional Riemannian manifolds 
    Dolbeault, Jean; Esteban, Maria J.; Jankowiak, Gaspard (2015) Article accepté pour publication ou publié
  • Thumbnail
    Critical magnetic field for 2d magnetic Dirac-Coulomb operators and Hardy inequalities 
    Dolbeault, Jean; Esteban, Maria J.; Loss, Michael (2021) Chapitre d'ouvrage
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo