
Unique continuation for many-body Schrödinger operators and the Hohenberg-Kohn theorem. II. The Pauli Hamiltonian
Garrigue, Louis (2020), Unique continuation for many-body Schrödinger operators and the Hohenberg-Kohn theorem. II. The Pauli Hamiltonian, Documenta Mathematica, 25, p. 869–898. 10.4171/DM/765
View/ Open
Type
Article accepté pour publication ou publiéDate
2020Journal name
Documenta MathematicaVolume
25Published in
Paris
Pages
869–898
Publication identifier
Metadata
Show full item recordAbstract (EN)
We prove the strong unique continuation property for many-body Pauli operators with external potentials, interaction potentials and magnetic fields in Lploc(Rd), and with magnetic potentials in Lqloc(Rd), where p>max(2d/3,2) and q>2d. For this purpose, we prove a singular Carleman estimate involving fractional Laplacian operators. Consequently, we obtain the Hohenberg-Kohn theorem for the Maxwell-Schr\"odinger model.Subjects / Keywords
many-body Pauli operators; magnetic fields; Hohenberg-Kohn theorem; Maxwell-Schrödinger modelRelated items
Showing items related by title and author.
-
Garrigue, Louis (2018) Article accepté pour publication ou publié
-
Garrigue, Louis (2019) Article accepté pour publication ou publié
-
Meng, Long (2019-05) Document de travail / Working paper
-
Huveneers, François; Abanin, Dmitry A.; De Roeck, Wojciech; Wen-Wei, Ho (2017) Article accepté pour publication ou publié
-
A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems Abanin, Dmitry A.; De Roeck, Wojciech; Ho, Wen Wei; Huveneers, François (2017) Article accepté pour publication ou publié